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Topological Spaces
Defn. A topology on X is a collection T ⊂ P(X) of subsets of X called
open sets with

I. ∅, X ∈ T

II. {Uα}α∈Λ ⊂ T =⇒
⋃
α∈Λ Uα ∈ T

III. U, V ∈ T =⇒ U ∩ V ∈ T

Defn. A set C ⊂ X is closed if its complement X \C ∈ T is open. Closed
sets satisfy

I. ∅ and X are closed.
II. finite unions of closed sets are closed
III. arbitrary intersections of closed sets are closed
IV. a subset A ⊂ X is closed if and only if A = A

Closure, Interior, and Boundary
The closure of a set A ⊂ X is defined to be the smallest closed set A
containing A, that is, the intersection of all closed sets containing A. Equiv-
alently, x ∈ A if and only if A intersects every neighborhood of x. Informally,
the closure contains all points beyond A which are topologically indistin-
guishable from A in the sense that they cannot be separated from A by an
open set.

Property 1. A = {x ∈ X | ∀x ∈ Ux ∈ T, A ∩ Ux 6= ∅}.

Defn. The interior A◦ of A ⊂ X is the union of all open subsets of A;
the largest open subset of A.

I. A◦ ⊂ A ⊂ A.
II. A connected =⇒ A connected.
III. x ∈ A iff every open nbhd of x intersects A
IV. A contains all limit points of A

Defn. The boundary of A ⊂ X is ∂A ≡ A \A◦.

Cluster Points
Defn. Let (X,T) be a topological space. A point x ∈ X is a cluster
point of a subset A ⊂ X iff every neighborhood of x intersects A at some
point other than x itself, that is, x ∈ A \ x.

Theorem 1. Let (X,T) be a topological space and A ⊂ X. If A′ is the set
of cluster points of A, then A = A ∪A′.

Proof. We already have A ⊂ A. If x ∈ A′ is a cluster point, then every
neighborhood of x intersects A, so x ∈ A by definition. Conversely, if x ∈ A,
then either x ∈ A or every neighborhood of x intersects A, so x ∈ A′. �

Corollary 1. A subset of a topological space is closed if and only if it
contains all its cluster points.

• In a T1 space, x is a cluster point of A if and only if every neighborhood
of x contains infinitely many points of A
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Continuity
Defn. f : (X,TX)→ (Y,TY ) is continuous if preimages of open sets are
open, that is,

∀U ∈ TY , f
−1(U) ∈ TX

I. Equivalently, preimages of closed sets are closed.
II. The composition of continuous functions is continuous.

Property 2. Continuity preserves many topological properties:

I. The continuous image of a compact set is compact (Theorem 11).
II. The continuous image of a connected set is connected (Theorem 5).

Theorem 2, (Pasting Lemma). Topological spaces (X,TX) and (Y,TY ).
Suppose X = A ∪B where A,B ⊂ X are either both closed or both open.
If f : X → Y is continuous when restricted to both A and B, then f is
continuous.

Proof. Assume A,B ⊂ X are closed; the proof for open sets is similar. Let
C ⊂ Y be closed. Since f |A is continuous, the preimage f |−1

A (C) is closed in
the subspace topology of A, therefore closed in X, and similarly for f |−1

B (C).
Thus f−1(C) = f |−1

A (C) ∪ f |−1
B (C) is closed in X, as desired. �

Homeomorphisms
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Sequences
Defn. A sequence (xn)∞n=1 in a topological space (X,T) converges to
x ∈ X iff each open neighborhood Ux of x contains a tail of the sequence,
that is, (xn)n≥N ⊂ Ux for some N ∈ N.

I. If xn → x, then every subsequence xnk
→ x.

Example 1. Sequences do not necessarily have unique limits; moreover,
subsequences of a convergent sequence may have limits that the parent
sequence does not! Consider the topology T = {b, ab, ac, bc, abc} on three
points a, b, c. TODO: When are these counterexamples avoided? Must we
have unique limits or is some weaker condition enough? Then,

I. b, b, b, b, . . . converges to both b and a
II. a, b, a, b, . . . converges to only a, but the subsequence b, b, b, . . . also

converges to b!

Sequential Spaces
Defn. A set U ⊂ X is sequentially open iff every sequence xn ∈ X
converging to a point x ∈ U eventually lies entirely within U , that is,

Defn. A set C ⊂ X is sequentially closed iff, whenever a sequence
xn ∈ C converges to a point x ∈ X, then x ∈ C.

Defn.

Property 3. Easy properties of sequentially closed / open sets.

I. Every closed set is sequentially closed, in particular A is.
II. Every open set is sequentially open.
III. If U ⊂ X is sequentially open, then X \A is sequentially closed.
IV. If C ⊂ X is sequentially closed, then X \ C is sequentially open.

In general, sequential closed/openness is not equivalent to closed/openness.

Example 2. A sequentially closed set is not necessarily closed.

Fréchet-Urysohn Spaces
Topological Subspaces
Defn. The subspace topology of Y ⊂ X wrt (X,TX) is

TY = {Y ∩ U | U ∈ TX}

Theorem 3. If B is a basis for (X,TX) then BY = {B ∩ Y | B ∈ B} is a
basis for the subspace topology of Y ⊂ X.

Topological Bases
Defn. A topological basis for a set X is a collection B ⊂ P(X) such
that

I. B covers X.
II. For all B1, B2 ∈ B, B1 ∩B2 is a union of basis elements
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Defn. The topology generated by a topological basis B ⊂ P(X) is the
set of all unions of elements from B. Equivalently, a set U ⊂ X is open iff
for each x ∈ U there is a basis element B ∈ B such that x ∈ B ⊂ U .

Defn. A subset B ⊂ T is a basis for the topology T if every open set
U ∈ T is a union of elements from B.

• If B is a basis for T, then B is a topological basis.
• If B is a basis for T, then B generates T.
• If B is a basis for T, then T is the collection of all unions of elements
of B.
• First countable
• Second countable

Defn. A subbasis S for a topology on X is a collection of subsets of X
whose union equals X. The topology generated by the subbasis is the
collection T of all unions of finite intersections of elements of S.

I. The collection of finite intersections of subbasis elements is a basis.
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Connectedness
Defn. A topological space (X,T) is disconnected iff X = U t V is a
union of disjoint open sets U, V ∈ T, otherwise it is connected.

I. A set A ⊂ X is connected if the subspace topology TA is connected.
II. Connectedness is preserved by set intersection.

Defn. A subset A ⊂ X is disconnected if it is disconnected in the sub-
space topology, that is, there exist open U, V ∈ T such that

I. (Cover) A ⊂ (U ∪ V )
II. (Relatively Disjoint) (U ∩ V ) ∩A = ∅
III. (Nonempty) U ∩A, V ∩A 6= ∅

We say that A ⊂ (U ∪ V ) is a disconnection of A in (X,T). Any subset
that crosses a disconnection is itself disconnected; more precisely,

Proposition 1. Let (U ∪ V ) disconnect A. If B ⊂ A intersects both U
and V , then (U ∪ V ) disconnects B.

Theorem 4. (X,T) is disconnected if and only if there is a continuous onto
function f : X → {0, 1}, where {0, 1} has the discrete topology.

Proof. If such a function exists, thenX disconnects asX = f−1{0}tf−1{1}.
Conversely, if X = U tV is disconnected, the function f(x) = 1U (x) is onto,
since A,B nonempty, and continuous, since U = f−1(1) and V = f−1(0)
are open. �

Theorem 5. The continuous image of a connected set is connected.

Proof. If f : X → Y is continuous with disconnected image f(X) = U t V ,
then X = f−1(U) t f−1(V ) is disconnected by continuity. �

Example 3. We explore the connectedness of familiar spaces:

I. The trivial topology is always connected.
II. The discrete topology on X is disconnected when |X| > 1.
III. The lower limit topology on R is disconnected.
IV. The cofinite topology on an infinite set is connected.

Theorem 6. The closure of a connected set is connected.

Proof. By Property 1, every neighborhood of each x ∈ A intersects A, so
A must cross every disconnection of A. Therefore, any disconnection of A
also disconnects A, by Proposition 1. �

Theorem 7. If connected subsets {Aα}α∈Λ of (X,T) share a common point
b ∈

⋂
αAα then A ≡

⋃
αAα is connected.

Proof. Suppose (U ∪ V ) disconnects A, with b ∈ U . Then (A ∩ V ) is
nonempty, so some Aα intersects V . But b ∈ Aα, so Aα also intersects U .
Therefore, U ∩ V disconnects Aα, a contradiction! �
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Total Disconnectedness
Defn. A topological space (X,T) is totally disconnected iff the only
nonempty connected sets are singletons.

I. The product of totally disconnected spaces is totally disconnected.

Example 4. The lower limit topology R` is totally disconnected. Recall
that the only connected subsets of R are intervals and singletons; since
intervals are disconnected in the strictly finer topology R`, only singletons
are connected. Alternatively, notice that if A ⊂ R` contains two points
a < b, then (−∞, b) ∪ [b,+∞) disconnects A.

Path-Connectedness
Defn. In a topological space (X,T), a path from x to y is a continuous
map γ : [a, b]→ X such that γ(a) = x and γ(b) = y.

I. Paths x ↝ y and y ↝ z can be appended to form a path x ↝ z.

Defn. A topological space (X,T) is path-connected if there is a path
between every two points. A subset A ⊂ X is path-connected if the subspace
topology is path-connected.

Theorem 8. Let f : (X,TX)→ (Y,TY ) be continuous. If (X,TX) is path-
connected, then so is f(X) ⊂ Y .

Proof. The pushforward f ◦ γ : [a, b] → f(X) of any path γ : [a, b] → X
from x1 to x2 in X is a path from f(x1) to f(x2) in the image f(X). �

Theorem 9. If (X,T) is path-connected, then it is connected.

Proof. Let X = U ∪V be a disconnection of (X,T). Suppose γ : [a, b]→ X
is a path from some u ∈ U to v ∈ V . Since [a, b] is connected, γ([a, b]) ⊂ X
must be connected; but U ∩ γ([a, b]) and V ∩ γ([a, b]) disconnect γ([a, b]), a
contradiction! �

Example 5. The sets R and R2 are not homeomorphic. If a homeomor-
phism f : R→ R2 were to exist, then the restriction f : R\{0} → R2\{f(0)}
would also be a homeomorphism; but this is impossible, since the image is
connected but the domain is not!
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Compactness
Sequential Compactness
Defn. A topological space (X,T) is sequentially compact iff every se-
quence has a convergent subsequence.

I. Every sequentially compact subset C ⊂ X is closed.
II. Sequential compactness is preserved by set intersection.
III. A closed subset of a sequentially compact space is sequentially com-

pact.

Example 6. In the discrete metric, all sets are closed and bounded but
fail to be sequentially compact.

Theorem 10. The image f(X) of a sequentially compact set X under a
continuous map f : X → Y is sequentially compact.

Proof. The preimage (xn) ⊂ X of any sequence (f(xn)) ⊂ f(X) has a
convergent subsequence (xnk

). By continuity, the image (f(xnk
)) ⊂ f(X)

converges. �

Corollary 2. If (X,T) is sequentially compact and f : X → Y continuous,
then f is a closed map.

Proof. Since X is sequentially compact, each closed C ⊂ X is sequentially
compact. Then, f(X) is sequentially compact in Y , therefore closed. �

Example 7. C([0, 1]→ R) with metric induced by ‖·‖∞ is unbounded, so
fails to be sequentially compact.

Sequentially compact space is separable, totally bounded, complete

Compactness
Defn. An open cover of a topological space (X,T) or subset A ⊂ X is
a collection {Uα}α∈I ⊂ T of open sets with A ⊂

⋃
α∈I Uα. A subcover is

any subcollection {Uα}α∈J for J ⊂ I.

Defn. A topological space (X,T) or subset A ⊂ X is compact iff every
open cover has a finite subcover.

I. A finite union of compact sets is compact.
II. A subset is compact if and only if its subspace topology is compact.

Property 4, (Compactness in Subspaces). In a topological space (Y,TY ),
a set A ⊂ X ⊂ Y is compact in the subspace topology (X,TX) of X if and
only if A is compact in the whole space (Y,TY ).

Proof. Every open cover of A ⊂ Y by open sets {Vα}α∈I in Y corresponds
to an open cover {Uα = Vα ∩X}α∈I of X ∩A by open sets in the subspace
topology and vice-versa. Since A ⊂ X, we have X ∩ A = A, so a finite
subcover for one immediately gives a finite subcover for the other. �

Example 8. The intersection of compact sets is not necessarily compact.
Start with the discrete topolgoy on N and add two points x1, x2. Declare
that the only open sets containing the new points are N∪{x1}, N∪{x2}, and
N ∪ {x1, x2}. Then N ∪ {x1} and N ∪ {x2} are compact with non-compact
intersection N!
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Example 9. Verifying compactness for some familiar spaces.

I. Any topology with finitely many open sets is compact, including any
topology on a finite set or the trivial topology on any set.

II. The discrete topology on an infinite set is never compact, because
the singletons {{x}}x∈X cover X.

III. The reals R are not compact; consider any cover by bounded intervals.
IV. The lower-limit topology R` fails to be compact for the same reason

as R.

Property 5. A closed subset A ⊂ X of a compact space (X,T) is compact.

Proof. Since A is closed, X \A together with any open cover of A form an
open cover of X. Compactness gives a finite subcover of X, so also A. �

Example 10. A compact set need not be closed. Consider the cofinite
topology on Z. The countable set 2Z ⊂ Z is not closed. However, 2Z is
compact, since any member U ∈ U of an open cover for Z ignores only
finitely many elements.

Example 11. The cofinite topology is always compact. Each member Uβ
of an open cover for X excludes only finitely many points from X. Cover
the remaining points with finitely many more sets from the cover.

Example 12. The cocountable topology is not compact over any infinite
set X. If X is countable, the cocountable topology is discrete, so non-
compact. For uncountable X, every countable subset A ⊂ X is closed,
with discrete subspace topology. Compactness of X would imply that A is
compact, a contradiction of Property 5!

Theorem 11. The continuous image of a compact set is compact.

Proof. Let X compact and f : X → Y continuous. If {Vα}α∈I ⊂ TY
is an open cover of f(X) ⊂ Y , then {f−1(Vα)}α∈I is an open cover of
X, which must have a finite subcover {f−1(Vαk

)}nk=1 by continuity. The
corresponding sets {Vαk

}∞k=1 form a finite subcover of f(X). �

Property 6, (Compactness in Hausdorff Spaces). Let (X,T) be Hausdorff.

I. Every compact set is closed. (Theorem 15).
II. An arbitrary intersection of compact sets is compact. (Exercise 1)

Continuous Functions on Compact Spaces

Theorem 12. If (X,T) is compact, then every continuous f : X → R real-
izes its supremum, that is, there exists z ∈ X such that f(z) = supx∈X f(x).

Proof. By Theorem 11, the continuous image f(X) ⊂ R is compact in R, so
closed and bounded by Theorem 23. Thus f(X) contains its supremum.�

Theorem 13. If X is compact, Y is Hausdorff, and f : X → Y is a
continuous bijection, then f is a homeomorphism.

Proof. (TODO) Since f is a bijection, f−1 exists. It remains to show
continuity. We begin by showing that f is a closed map. �
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Why Compactness?
Remark 1, (Local-to-Global Property, Jänich 1984, §8). Properties that hold
locally in a compact space can be extended globally in the following way.
Let (X,T) be compact and P be a property that the open subsets of X
may or may not have, but which is preserved under finite unions. Then, if
X has this property locally, that is, every point has a neighborhood with
property P , then X itself has property P , since X is covered by a finite
union of open neighborhoods with property P .

Example 13. Simple examples of the local-to-global property.

I. If X is compact and f : X → R is locally bounded (continuous, for
example), then f is bounded.

II. Let X be compact and suppose (fn)n∈N converges locally uniformly.
Then the sequence converges uniformly on all of X.

III. Let X be compact and {Uα}α∈I be a locally finite cover (each point
has a neighborhood intersecting only finitely many covering sets).
Then the cover is finite.

IV. A vector field on a compact manifold without boundary is globally
integrable!

9
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Separation Axioms

T0 T1 Hausdorff Regular Normal

Figure 1: Points are dots; open sets are dashed; closed sets are hatched.

Axiom T1

Defn. A topological space (X,T) is T1 iff iff for any distinct x, y ∈ X,
there is a neighborhood of x not containing y (and vice versa).

I. A topological space is T1 if and only if singletons are closed.

Example 14. The following topological spaces are not T1 spaces:

I. The trivial topology over any set.
II. The topology generated by the concentric circles {‖x‖2 = r} ⊂ R2.
III. R with open sets T = {∅,R} ∪ P(Z). No two x, y /∈ Z are separable.

Axiom T2 (Hausdorff)
Defn. A topological space (X,T) is Hausdorff iff distinct points x 6= y
can always be separated by disjoint open neighborhoods Ux, Uy ∈ T.

I. The continuous preimage of a Hausdorff space is Hausdorff.
II. Homeomorphisms preserve Hausdorff separability.
III. Sequences in a Hausdorff space have at most one limit.

Example 15. The cofinite topology on Z is T1 but not Hausdorff. Distinct
x, y ∈ Z cannot have disjoint open neighborhoods Ux, Vy ∈ TZ; otherwise,
U ∩ V = ∅ and Z \ U contains the infinite set V , contradicting that U is
cofinite!

Example 16. A topological space with unique limits is not necessarily
Hausdorff. The cocountable topology on R is not Hausdorff, since all open
sets intersect, but limits are still unique, since every convergent sequence is
eventually constant.

Theorem 14. If a first-countable space has unique limits, it is Hausdorff.

Proof. It is enough to show that a first-countable non-Hausdorff space fails
to have unique limits. Suppose x, y ∈ X cannot be separated by disjoint
neighborhoods. Let U1 ⊃ U2 ⊃ · · · ∈ NT(x) and V1 ⊃ V2 ⊃ · · · ∈ NT(y) be
decreasing countable local bases for x and y, respectively. By assumption,
we can pick zn ∈ Un ∩ Vn for all n ∈ N. The sequence (zn) converges to
both x and y, since each neighborhood of either point contains a tail of the
sequence. �

Theorem 15. If (X,T) is Hausdorff, then every compact set is closed.

Proof. We show X \A is open for any compact A ⊂ X. Fix y ∈ X \A. Sep-
arate y from each x ∈ A by disjoint open sets Ux, Vx ∈ T. By compactness,
the open cover {Vx}x∈A of A has a finite subcover {Vx1 , . . . , Vxn}. Thus
∩nk=1Uk ⊂ X \A is an open neighborhood of y, disjoint from A. �
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Example 17. (TODO) The cocountable topology on R is not Hausdorff,
since all open sets intersect, but compact sets must be finite, therefore
closed.

Exercise 1. In a Hausdorff space (X,T), any arbitrary intersection of
compact sets is compact.

Regularity
Defn. A topological space (X,T) is regular iff for all closed C ⊂ X and
x /∈ C, there exist disjoint open U, V ∈ T such that C ⊂ U and x ∈ V .

Example 18. The space (R,T) where T ≡ TEuc ∪ {(a, b) \ Q | a, b ∈ R}
is Hausdorff, being a refinement of R, but not regular. The closed set Q is
not separable from any x /∈ Q by disjoint open sets.

Theorem 16. Every compact Hausdorff space (X,T) is regular.

Proof. Let C ⊂ X be closed and x /∈ C. Using the Hausdorff property,
separate each y ∈ C from x with disjoint open sets y ∈ Uy, x ∈ Vy. As a
closed subset of a compact space, C is compact by Property 5, so the open
cover {Uy}y∈C of C has a finite subcover {Uk}nk=1. Therefore, V =

⋂n
k=1 Vk

and U =
⋃n
k=1 Uk are disjoint, open, and separate x from C. �

Normality
Defn. A topological space (X,T) is normal if for any disjoint closed sets
A,B ⊂ X, there are disjoint open sets U, V ∈ T with A ⊂ U and B ⊂ V .

Theorem 17. Proofs for the following facts can be found in Munkres [2].

I. Every second-countable regular space is normal.
II. Every metrizable space is normal.
III. Every compact Hausdorff space is normal.

Defn. Subsets A,B ⊂ X of a topological space (X,T) can be separated
by a continuous function there is a continuous function f : X → [0, 1]
such that f(A) = {0} and f(B) = {1}.

Theorem 18, (Urysohn Lemma). In a normal topological space (X,T),
any two disjoint closed subsets can be separated by a continuous function.

Proof. For a proof, see (Munkres 2000, §33). �

Defn. A topological space (X,T) is completely regular or T3 1
2
if it is

T1 and additionally every closed set can be separated from any point by a
continuous function.

Every completely regular space is regular, and by Urysohn’s lemma every
normal space is completely regular.

11
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Countability Axioms
Defn. In a topological space (X,T), denote the open neighborhoods of a
point x ∈ X by NT(x) = {U ∈ T | x ∈ U}.

Defn. In a topological space (X,T), a local base at x ∈ X is a collection
Bx ⊂ NT(x) of neighborhoods such that for any U ∈ NT(x), there is B ∈ Bx
such that B ⊂ U .

Defn. A topological space (X,T) is first countable iff X has a countable
local base at every point, and second countable iff it has a countable
basis.

I. Every second countable space is first countable.

First-Countability
Property 7. If (X,T) is first-countable, then there is a decreasing count-
able local base, B1 ⊃ B2 ⊃ · · · ∈ NT(x) at each point.

Proof. For any countable local base {Bn}∞n=1 ⊂ NT(x), the decreasing
sequence Un =

⋂n
k=1Bn ⊂ Bn is also a countable local base. �

Defn. A subset A ⊂ X is dense in topological space (X,T) iff A = X.
The space (X,T) is separable iff there is a countable dense subset.

Theorem 19. Let (X,T) be first-countable and A ⊂ X. For every x ∈ A,
there is a sequence x1, x2, . . . ∈ A with xn → x.

Proof. Take a decreasing countable local base B1 ⊃ B2 ⊃ · · · ∈ NT(x) at
x ∈ A. By definition of closure, every neighborhood of x intersects A, so we
can find xn ∈ (Bn ∩A). Then xn → x, since each neighborhood U ⊂ NT(x)
has Un ⊂ Bn ⊂ U for some n ∈ N. �

Corollary 3. Let the topological space (X,T) be first-countable. A set
C ⊂ X is closed if and only if it is sequentially closed.

Corollary 4. Every point in a first-countable topological space (X,T) is
the limit of some sequence.

Second-Countability
Theorem 20. Every second-countable space (X,T) is separable.

Proof. Let B = {B1, B2, . . . } ⊂ T be a countable basis. Choose xn ∈ Bn
arbitrarily and let A = {xn}n∈N. Now, every open neighborhood U ∈ NT(x)
of a point x ∈ X must contain a basis set xn ∈ Bn ⊂ U , so A = X and A
is dense! �

12



Benjamin R. Bray Topology: Fundamentals of Topology DRAFT: June 21, 2018

Product Spaces
Product Topology on X × Y

Given topological spaces (X,TX) and (Y,TY ), there is a natural way to
define a topology on the product space X × Y .

Defn. For topological spaces (X,TX) and (Y,TY ), the product topology
on X × Y is the topology TX×Y generated by the basis Bbox given by

Bbox = {U × V | U ∈ TX , V ∈ TY }

Property 8. The collection S = {π−1
X (U) | U ∈ TX} ∪ {π−1

Y (V ) | V ∈ TY }
is a subbasis for the product topology on X × Y .

Theorem 21. If X × Y is compact, then X is compact.

Proof. The projection map is continuous, so πX(X×Y ) = X is compact.�

Property 9. Which properties are preserved under the operation of taking
products?

• Sequential compactness. YES!
• Connectedness. YES!
• Hausdorffness. YES!
• T1ness. YES!

Topology on Arbitrary Products
It is also possible to define a topology on arbitrary product spaces,

Box Topology, from basis Bbox = {U1 × U2 × · · · | Uk ∈ Tk}.
Product Topology, from subbasis S =

⋃
k∈N{π

−1
Xk

(Uk) | Uk ∈ Tk}.

First, we must be more precise about what we mean by infinite products.

Defn. Let J be an index set. Given a set X, a J-tuple of elements of X
is a function x : J → X, denoted (xα)α∈J .

Defn. Let {Aα}α∈J be an indexed family of sets and let X =
⋃
α∈J Aα.

The cartesian product of {Aα}α∈J , denoted by
∏
α∈J Aα is defined to be

the set of all J-tuples of elements of X such that xα ∈ Aα for all α ∈ J .

13



Benjamin R. Bray Topology: Fundamentals of Topology DRAFT: June 21, 2018

Quotient Spaces
Equivalence Classes
Notation 1. For an equivalence relation ∼ on a set X, let X/∼ denote
the set of equivalence classes and [x] ∈ X/∼ denote the equivalence class of
x. Let π : x 7→ [x] be the canonical projection from X to X/∼.

Defn. The quotient topology on X/∼ is the finest topology making π
a continuous map, that is, U ⊂ X/∼ is open in the quotient topology iff
π−1(U) is open in X.

Quotient Maps
Defn. A surjective map p : X → Y between topological spaces (X,Tx),
(Y,TY ) is a quotient map provided that U ∈ TY ⇐⇒ p−1(U) ∈ TX .
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Metric Spaces
Defn. Ametric space (X, d) is a set with a distance d : X×X → [0,+∞)
such that for all x, y, z ∈ X,

I. d(x, y) = 0
II. d(x, y) = d(y, x)
III. d(x, z) ≤ d(x, y) + d(y, z)

Defn. The metric topology on (X, d) is that induced by the open balls
Bε(x0) ≡ {x ∈ X | d(x, x0) < ε}.

Total Boundedness
Defn. A subset A ⊂ X of metric space (X, d) is an ε-net iff every point
is ε-close to A, that is, {B(a, ε)}a∈A is an open cover of X.

Defn. A metric space is totally bounded if it can be covered by finitely
many arbitrarily small open sets, that is, a finite ε-net exists for every ε > 0.

Theorem 22. A metric space (X, d) is sequentially compact if and only if
it is complete and totally bounded.

Proof. Adapted from (Hunter and Nachtergaele 2001).

⇐= A complete, totally bounded metric space is sequentially compact.

For each n ∈ N , let Fn ⊂ X be a finite 1/n-net. Some open ball B1
from the coarsest net F1 must contain infinitely many terms of the sequence.
Similarly, someB2 ⊂ B1 from F2 contains infinitely many terms. Proceeding
inductively, we find a sequence B1, B2, . . . of shrinking open balls each
containing infinitely many terms of (xn). Choosing one point from each
yields a convergent subsequence.

=⇒ A sequentially compact metric space is totally bounded.

If no finite ε-net exists, then for each finite F ⊂ X there is y ∈ X with
d(y, F ) > ε. Let x0 ∈ X be any point. For any n ∈ N, choose xn ∈ X
with d(xn, {xk}n−1

k=1) > ε. Any subsequence of (xn) contains only points of
mutual distance ≥ ε from one another. Such a sequence is not Cauchy, so
fails to converge, violating sequential compactness.

=⇒ A sequentially compact metric space is complete.

A Cauchy sequence converges to the limit of any convergent subsequence,
guaranteed to exist by sequential compactness. �

Corollary 5. A sequentially compact metric space (X, d) is separable.

Proof (from [3]). By Theorem 22, (X, d) has a finite (1/n)-net An for all
n ∈ N. The set A =

⋃∞
n=1An is a countable dense subset, by construction.�

Compactness in Metric Spaces
Theorem 23. In a metric space, every compact set is closed and bounded.

Proof. Metric spaces are Hausdorff, so by Theorem 15, compact sets are
closed. For boundedness, note that the open balls {Bn(0)}∞n=1 cover any
set, and only finitely many are needed to cover a compact set. �
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Compact =⇒ Sequentially Compact

Lemma 1. In a metric space (X, d), suppose the sequence (xn)∞n=1 has no
convergent subsequence. Then for all x ∈ X, there is εx > 0 such that
B(x, εx) contains only finitely many terms of the sequence.
Proof. Suppose x ∈ X exists such that for any ε > 0, B(x, ε) contains
infinitely many terms of the sequence. Let n0 = 0. For k ∈ N, pick nk >
nk−1 with xnk

∈ B(x, 1
k ). Then xnk

→ x is a convergent subsequence! �

Theorem 24. Every compact metric space (X, d) is sequentially compact.
Proof. Suppose (X, d) is not sequentially compact, and take (xn)∞n=1 with
no convergent subsequence. The sets {B(x, εx)}x∈X from Lemma 1 form
an open cover of X. Since each B(x, εx) contains only finitely many terms
of (xn)∞n=1, there can be no finite subcover, and X fails to be compact. �

Sequentially Compact =⇒ Compact

Defn. Let U = {Uα}α∈I be an open cover of the metric space (X, d). We
say δ > 0 is a Lebesgue number for U iff for all x ∈ X, there is αx ∈ I
such that B(x, δ) ⊂ Uαx

.
Lemma 2. Suppose an open cover U = {Uα}α∈I of metric space (X, d) has
no positive Lebesgue number. Then there is a sequence (xn) ⊂ X such that
for all n ∈ N, the set B(xn, 1

n ) is not entirely contained by any Uα, that is,

∀n ∈ N, ∀α ∈ I, ∃x ∈ B(xn, 1
n ) s.t. x /∈ Uα (1)

Proof. Negating the definition, ∀ δ > 0,∃x ∈ X,∀α ∈ I,B(x, δ) 6⊂ Uα.
Construct the desired sequence by choosing xn corresponding to δn = 1

n .�
Lemma 3, (Lebesgue Number Lemma). Every open cover of a sequentially
compact metric space (X, d) has a positive Lebesgue number.
Proof. When no positive Lebesgue number exists, the previous lemma gives
a sequence (xn) in X such that for all n ∈ N, the set B(xn, 1

n ) is not entirely
contained by any Uα. By sequential compactness, there is a subsequence
(xnk

) converging to some x ∈ X, which lies in some member Uα of the open
cover. Then for some ε > 0 and for k large enough we have B(xnk

, 1/nk) ⊂
B(x, ε) ⊂ Uα, a contradiction! �

Theorem 25. Every sequentially compact metric space (X, d) is compact.
Proof. Let U be an open cover of (X, d). By Lemma 3, U has a positive
Lebesgue number δ > 0. By Theorem 22, (X, d) has a finite δ-net F ⊂ X,
that is, for all x ∈ X, there is x0 ∈ F with x ∈ Bδ(x0). Further, by
definition of Lebesgue number, for all x0 ∈ F there is αx0 ∈ I such that
Bδ(x0) ⊂ Uαx0

. Together, we see that {Uαx0
}x0∈F is a finite subcover so X

is compact. �

Continuity & Uniform Continuity in Metric Spaces
Theorem 26. Let (X, dX) and (Y, dY ) be metric spaces. If (X, dX) is
compact and f : X → Y is continuous, then f is uniformly continuous.

Proof. Pick ε > 0. By continuity, for each x ∈ X there is δx > 0 such that
f(B(x, δx)) ⊂ B(f(x), ε/2). The open balls {B(f(x), δx/2)}x∈X cover the
compact set X, so there is a finite subcover {B(f(zk), δzk

/2)}nk=1. Take δ =
mink δzk

. For any x1, x2 ∈ X with d(x1, x2) < δ, we have x1, x2 ∈ B(zk, δzk
)

for some zk, so f(x1), f(x2) ∈ B(f(zk), ε/2) differ by at most ε. �
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Uniform Convergence

Defn. Let fn : X → Y be a sequence of functions from a set X to a metric
space (Y, d). The sequence (fn) converges uniformly to f : X → Y iff

∀ ε > 0, ∃N ∈ N, ∀n > N, ∀x ∈ X, d(fn(x), f(x)) < ε

Theorem 27, (Uniform Limits Preserve Continuity). Let fn : X → Y be
a sequence of continuous functions from a topological space (X,T) to a
metric space (Y, d). If fn → f uniformly, then f : X → Y is continuous.

Proof (from Munkres [2]). Let V ⊂ Y be open. To show f−1(V ) ⊂ X
is open, it suffices to find for every x0 ∈ f−1(V ) an open neighborhood
x0 ∈ Ux0 ∈ T such that Ux0 ⊂ f−1(V ), that is, f(Ux0) ⊂ V .

Let y0 = f(x0). Choose ε > 0 so that B(y0, ε) ⊂ V . By uniform conver-
gence, chooseN ∈ N such that for all n > N and x ∈ X, d(fn(x), f(x)) < ε/3.
By continuity of fN , choose δ > 0 such that fN (B(x0, δ)) ⊂ B(fN (x0), ε/3).
Then,

d(f(x), fN (x)) ≤ ε/3 (by choice of N)
d(fN (x), fN (x0)) ≤ ε/3 (by choice of Ux0)
d(fN (x0), f(x0)) ≤ ε/3 (by choice of N)

By the triangle inequality, d(f(x), f(x0)) < ε, so f(U) ⊂ B(y0, ε) ⊂ V . �

17



Benjamin R. Bray Topology: Fundamentals of Topology DRAFT: June 21, 2018

Examples and Counterexamples
Trivial. Coarsest topology T = {∅, X}.

• Always connected and compact.

Discrete. Finest topology T = P(X), all subsets are open.

• Hausdorff for any X.
• Totally disconnected when |X| > 1.
• Not compact over any infinite set, since singletons are open.

Cofinite. T = {U ⊂ X | X \ U finite}.

• X = Z: T1 but not Hausdorff
• Connected for any infinite set.
• Always compact.

Cocountable. T = {U ⊂ X | X \ U countable} on an infinite set.

• Not Hausdorff because all open sets intersect.
• Connected because all open sets intersect.
• Convergent sequences are eventually constant; thus limits are unique.
• Not compact over any infinite set.

Lower Limit (R`). Topology on R generated by half-open intervals [a, b).

• Explicitly, T = {U ⊂ R | ∀x ∈ U,∃ ε > 0, [x, x+ ε) ⊂ U}.
• Disconnected, since R` = (−∞, 0) ∪ [0,+∞).
• Totally disconnected by Example 4.
• Not compact, since R` is a refinement of R.

Discrete Metric. d(x, y) = 1x=y

• Generates the discrete topology.
• Every subset is closed, bounded but not sequentially compact.

Order Topology. For an ordered set X, consider the topology generated
by the intervals (a, b).
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