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These notes are almost entirely paraphrased from one of the references,
with some extra details filled in by me where needed.

Many of the products we have in linear algebra are bilinear maps:

scalar VX F —V inner R" xR" - R

cross R? x R3 = R? matrix R™XF x RFX7 _y RX7

Accordingly, we might think it important to require that any new product
we define is also bilinear.

1 Background: Free Vector Space over a Set

Definition 1. The free vector space generated by a set X over field F is
the set of functions X — F which are nonzero at only finitely many points,

Free(X) = {f: X = F | f~" (F\{0}) is finite}

The free vector space generated by X is a vector space when equipped with
the standard operations of function addition and scalar multiplication:

(f +9)(x) = f(x) + 9() (af)(x) = a- f(z)
The standard basis for Free(X) is given by the indicator functions,
Free(X) =span {1, : X — {0,1} |a € X}
Example 1. The free vector space on [n] over R is isomorphic to R™.

The map ¢ : X — Free(X) mapping (a € X) — 1, is a bijection. Accord-
ingly, Free(z) may be regarded as the set of formal linear combinations of
elements from X.

Remark 1. The map ¢ is universal in the sense that if ¢ : X — V is an
arbitrary map from X to a vector space V', then there is a unique map ¢~
such that the diagram below commutes:

X v

[

Free(X)
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2 Direct Sums

For comparison to tensor products, the direct sum V & W of two vector
spaces V, W by imposing a vector space structure on the Cartesian product
V x W, with addition and scaling defined by

(vi,w1) + (v2, we) = (V1 + V2, w1 + W)
a(vi,wr) = (avr, awn)

So that expressions like v + w = (v, w) are well-defined, it is convenient to
identify v € V' with the element (v,0) € V x W in the larger space.

Proposition 1. If By = {vy,...,vn} and By = {w1,...,w,} are bases
for V-and W, respectively, then By UByy is a basis for V@& W . Consequently,

dim(V e W) =dimV + dim W

Proposition 2. Let T € L(V,V) and U € L(W,W) be linear operators.
There is a unique linear operator (T ®U) : (V& W) — (V & W) such that

TelU)(veow)=(Tv)® (Uw) forallve Viwe W

The matrix of (T @ U) in any basis is block-diagonal, with blocks corre-
sponding to the matrix representation of T' and U respectively.

Proposition 3. The direct sum satisfies the following useful properties:

I det(T®U) = (det T)(det U)
II. tr(T® U) = tr(T) & tr(U)
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3 Tensor Products

(wikipedia) The tensor product of V and W is the vector space generated by
the symbols v ® w with v € V,w € W, in which the relations of bilinearity
are imposed for the product operation ® and no other relations are assumed
to hold. The tensor product space is thus the freest (or most general) such
vector space, in the sense of having the fewest constraints.

Definition 2. The tensor product of two vector spaces V, W over F is a
vector space V ® W over F together with a bilinear map V x W Bvew
with the property that whenever By, By, are bases for V, W respectively,
the set {v; ® w; | v; € By, w; € By} gives a basis for V@ W.

The following theorem shows that the property in the definition need
not be checked for all pairs of bases; just one pair is sufficient.

Theorem 1. Let Y be a vector space and ¢ : V x W — Y be bilinear.
Suppose there are bases By, By for V,W respectively, such that ¢(v x w)
is a basis for Y. Then the same holds for any pair of bases.

3.1 Quotient Space Construction

Let V, W be vector spaces over F. Following (Zakharevich 2015), our goal
is to construct a vector space V @ W such that for any vector space Z,

LV & W, 2) = Py )

Step 1. Let A = Free(V x W) be the free vector space over F on the
product V' x W. We will demonstrate that
E(A, Z) o~ fun‘c/lt/ion%

VXW—

For v € V,w € W, define the notation v @ w = 1, ., € A. A typical vector
has the form f = Y}, ax(vix ® wy) € A. By linearity, observe that each
T € L(A,Z) is determined uniquely by its values on the standard basis,

exposing a bijection between £(A, Z) and (nonlinear) functions VxW — Z.

Tf=T (Z ai(ve ® wk)) = ZakT(Uk ® wy)

k=1 k=1

Step 2. Since L(A, Z) represents arbitrary functions, we will construct
V @ W by shrinking A so that L(V x W, Z) represents only the bilinear
maps V x W — Z. For example, if T € L(V ® W, Z) is a linear map, the
following proof of bilinearity in the first argument

T((v1 +v2) @w) = T((v1 @ w) + (v2 © w))
=T @w)+T(v2 @ w)
requires that (v +v2) ®w and (v @ w) 4 (v @ w) refer to the same element

in V ® W. Starting from A, we can enforce this equivalence implicitly by
defining V' ® W to be the quotient space A/Aq, where

(v1+v2)Quw— (V1 Qw) — (V2 w
v® (w +wy) — (V@wy) — (v ws
(av) @w —a(lvew
v ® (aw) — a(v @ w

a€F

Ao = span veViweW

—_ — — —
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This choice was made so that each linear map T € L(V @ W, Z) will satisfy!

T((v1 4+ v2) @w) =T (v1 @w) + T'(ve @ w)
T (w +ws2)) =TwRw) + T (v ws)
T((av) @ w) = T(a(v©w))
T(o ® (aw)) = T(a(o ® w))

As pointed out by (Purbhoo 2012), since A = Free(V x W) is the space of
formal linear combinations of (v, w) pairs, Ag is the space of those linear
combinations that can be simplified to the zero vector using bilinearity.
Accordingly, A/A( reduces A to a space where two expressions are equal iff
one can be simplified to the other using bilinearity.

3.2 Bilinearity, Linearity, and Universality

We have achieved our goal that £(V ® W, Z) is equivalent to the set of
bilinear maps V x W — Z, for any vector space Z. Notice that we can easily
translate between linear maps £(V ® W, Z) and bilinear maps L(V x W, Z).

Linear to Bilinear. Given a linear map T € L(V @& W, Z), the map
(v,w) — T'(v® w) is bilinear, since

I. themap V x W=V @ W given by (v,w) — (v ® w) is bilinear
II. the composition of a bilinear map and a linear map is bilinear

Bilinear to Linear. Given a bilinear map f : V. x W — Z, define a
linear map g : A — Z by g(v ® w) — f(v,w), which is well-defined since
(v®w) form a basis for A. Moreover, bilinearity of f implies that g vanishes
on the four types of spanning vectors which define Ay, so g(A4q) = {0}.
Consequently, g descends to a well-defined linear map on A/A.

We have just proven the following universality theorem, which states
that every bilinear map is the composition of a linear map with the tensor
product.

Theorem 2. (Universal Property) Let V, W, M be vector spaces over F. For
each bilinear map ¢ : V- x W — M, there is a unique linear transformation
¢ :Ve@W — M such that ¢(v @ w) = ¢(v,w) for allv € V,w € W.
Moreover, every linear transformation in L(V ® W, M) arises in this way.

More generally, every linear map V; ® Vo ® --- ® Vi — M corresponds
to a k-linear map V3 x Vo X -+ x Vi — M.

3.3 Basis for the Tensor Product

Theorem 3. Let{vy,...,v,} CV bea basis for V and {w1,...,w,} C W.
Then a basis for V@ W is given by {v; ® w; | i € [m],j € [n]}.

Proof. Notice that for any v = > """, o;v; and w = Z?:l Bijw;,

VW = (Zaim) Dw= () ®w=Y aiv;®w)

i=1 =1 =1
m n m n
=D i |vi@) B | =) Y aibivi®w;)
i=1 j=1 i=1 j=1

ITechnically, (v®w) € V® W stands for the equivalence class of v ®@w = L(v,w) € A
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Therefore V@ W = span{v; ® w; | i € [m],j € [n]}. For independence, we
will explicitly construct an isomorphism between V ® W and an arbitrary
(mn)-dimensional vector space Z with basis vectors z;;. There is a unique
linear map from ¢ : Z — V @& W defined by ¢(zi;) = (v; ® w;). To show
¢ is an isomorphism, we manually construct an inverse ¢~!. Consider the
linear map A — Z mapping

vOw=y Yy aifivi®uw) =y Y aifz

i=1 j=1 i=1 j=1

Notice that this map is zero on Ay, hence the map is well-defined on A/A.
Moreover, it is surjective, since v; ® w; € A, and inverse to ¢. Hence ¢ is
an isomorphism. O

Corollary 1. dim(V@ W) =dimV x dim W

Remark 2. Although V ® W is spanned by the pure tensors v ® w, but
not every vector can be written in this form. There exist elements of the
tensor product which are not pure tensors.

4 Computations with Tensor Products

The construction above is axiomatic, and defines tensors in terms of the
properties they should satisfy. In practice, it is useful to actually identify
the space V@ W and the bilinear map V x W — V ® W with some familiar
object. Note that we must specify both the vector space we are identifying
with V @ W and the product that we are using to make this identification.

4.1 Familiar Examples

Example 2, (Matrices). Consider V' =F" and W = F™ To identify V@W
with the space Mat,, «,(F) of matrices requires three steps:

e Define a vector space isomorphism ¢ : (F™ @ F") — Mat, xn(F). Since
these are finite-dimensional spaces with the same dimension, there is a
natural isomorphism associated with any choice of bases.

e Define a bilinear map ® : F™ x F™ — Mat,, x(F) that explains how
to construct a product element in Mat,, x, (F) from the two operands.
This product should respect the isomorphism, ¢(v ® w) = v ® w. For
this example, one possible choice? is the outer product v ® w = vwT,
meaning that identify vw” with v ® w.

o Verify that (Maty,x,(F),®) is the tensor product of F” and F™ by
manually checking the basis condition in the definition. Indeed, choos-
ing the standard basis {v1,...,v,} for F" and {wy, ..., w,} for F™ it
is clear that the matrices {viij} form a basis for Mat,, . (F).

Example 3, (Polynomials). Let V' = F[z], the vector space of polynomials
over one variable. Then V ® V = F[z, 3] is the space of polynomials over
two variables, with product f(z) ® g(y) = f(z)g(y). To verify, consider the
basis B = {1,z,22,...} for V and observe that a basis for F[z,y] is

VeoV={z*®2"|abec N} ={z%"|a,becN}

2As (Purbhoo 2012) notes, there is more than one way to identify the tensor product
of F™ and F" with Mat,, xn. They are all equivalent, in the same sense that A x B is
equivalent to B x A for sets, but it is important to remember which choice was made.
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Example 4. V@ F 2 V, with product v ® @« = av. Choosing any basis
{v1,...,v,} for V and the basis {1} for F, we see that {vs@1}7_; = {vg}r=1
recovers the same basis for V.

4.2 Revealing Examples

So far, our discussion of tensor products has not produced any unfamiliar
objects. The next several examples are more interesting.

Example 5. Let V,W be finite dimensional vector spaces and consider
the dual space V* = L(V,F). Then, as a generalization of Example 2,
V*eW = L(V,W), where T ® w € L(V,W) is defined to be the linear
transformation (f ® w)(v) = f(v) - w. If V and W are infinite-dimensional,
then V* @ W = {T € L(V,W) | dim(imT) < oo} is the set of finite-rank
linear transformations in L(V,W). This follows from the fact that T ® w
has rank one, and a linear combination of such transformations must have
finite rank.

Example 6. Tensor products work well to distinguish spaces with different
units. For example, if V' is the space of velocity vectors with units (m/s) and
T is the space T of time measurements with units s, then V ®T is the space
of displacement vectors, with units (m). Although we can identify V' = R3
and 7' = R, this perspective emphasizes that V and T are fundamentally
different.

Example 7. Let V,W, Z be vector spaces. Composition (F,G) — F oG
of linear maps is bilinear, giving rise to a linear map L(V,W)® L(W,Z) —
L(V,Z).

4.3 Exotic Examples

4.4 Trace Functional

Let V be finite-dimensional. By Example 5, V* @ V = L(V — V). Notice
that the evaluation functional (f,v) — f(v) from V* x V — F is bilinear.

Definition 3. The trace functional on L(V — V) is the unique linear
transformation tr : V* ® V' — F such that tr(f @ v) = f(v) forall v € V.

Example 8, (Contraction). Let Vi, Vs, ..., Vi be f.d.v.s over F. Suppose
Vi = V;* for some pair (i,j). Consider the products V = @, _, V, and
W = @), ; Vr. Using the trace, a contraction with respect to (4, j) is
the linear transformation tr;; : V' — W satisfying

trij(v1 ® - ®@ug) =tr(v; ;) (V1 ® -+ - D Vi1 QVig1 @ -+ - Q vg)
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5 Tensor Products & Linear Maps

5.1 Tensor Product of Linear Maps

Proposition 4. Let T € L(V1,V,) and U € L(W;y,Ws) be linear maps.
There is a unique linear map T @ U € L(Vy; @ Wy — Vo ® Wa) such that

TelU)(vew)=(Tv)® (Uw) forallveV,weW

Proof. Apply Theorem 2 to the bilinear map (v,w) — (Tv) @ (Uw). O

5.2 Matrix Kronecker Products

Let By = {v1,...,vm} € Vand By = {w1,...,w,} € W be bases for V, W
respectively. Suppose T € L(V, V) has matrix A € F**",

U1 a1 ai2 0 Qim U1
V2 a1 QA2 -+ A2m V2
—>
Um | Aml Am2 ° Omm Um |y

On the tensor product space, the map (T ® Iy )(v ® w) applies A to v,
leaving w untouched. With respect to the basis v; ® w;, this transformation
is represented in matrix form by

(111[ (112[ e almI
agll Clzz[ e ang
am1] amgl e amml

5.2.1 Kronecker Products with the Identity

Example 9. For m = 2 and n = 3, the Kronecker product matrix for

a1 0 0 a2 0 0
0 a1 O 0 a2 O
B 0 0 an| O a2 6x6
A ® I= a1 0 0 a2 0 0 < R
0 a21 0 0 a99 0
0 0 a21 0 0 a2

Example 10. For m = 2 and n = 3, a linear map U € L(W, W) with
matrix B € R3*3 acts on V ® W according to the Kronecker product

biir b2 bis| 0 0 O

bar ba2 b3 | O 0O O

b31 b3z b33 | O 0 0
0 0 0 | b31 b3a b33

c RGXG

I,h®B =

5.2.2 Properties of Kronecker Products
Proposition 5. The Kronecker product has the following properties.

I. (A1 ®I)(A2 ®I) = (AlAQ) ®I
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. (I ®B1)(I® Bs)=1® (B1B>)
. (ARI)(I®B)=(I®B)(A®I)=(A® B)
IV. (A® B)(v®w) = (Av) ® (Bw)

Proposition 6. The Kronecker product has the following properties.

L (A®B)T = (AT @ BT)
II. (A® B)(C® D) = (AC ® BD)
Il. (A B)'=A"1g B!

Proposition 7. (Trace and Determinant) The Kronecker product satisfies

I. det(A® B) = (det A)™(det B)"
II. tr(A® B) = (tr A)(tr B)

Example 11. (Quantum Mechanics, [3]) In quantum mechanics, each de-
gree of freedom in a system is associated with a Hilbert space. For example,
a free particle in three dimensions has three dynamical degrees of freedom
Dz, Py, Pz, corresponding to the momentum. The eigenstate of the full Hamil-
tonian is obtained by the tensor product of momentum eigenstates in each
direction,

|pw7py7pz> = ‘pa:> by |py> & |pz>

Example 12. An inner product (-,-) : V x V — F is a bilinear map, so by
Theorem 2 there is a corresponding linear map F' € L(V ® V,F) such that
(Ul, U2> = F(Ul 9 ’U2).
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6 The Tensor Algebra
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7 The Symmetric Tensor Algebra

The universal property for tensor products (Theorem 2) gives a natural
correspondence between bilinear maps V x W — M and linear maps V ®
W — M. By restricting our attention to linear maps with additional
structure, it may be possible to view M is a quotient space of V @ W.

Definition 4. Let V be finite-dimensional over F. Define 7°(V) = F and

THV)= Ve =V e Ve " @V forany ke N
Let C* < T*(V) be the subspace spanned by all vectors
(351®"'®$i®"'®$j®"'®$k)—(351®"'®$j®“‘®xi®"'®$k)

The k™ symmetric power of V is the quotient space Sym” (V') = T*(V)/C*.
Elements of this space are written 172 - - - 7} = Projgyr vy (21 @ - @ x1).

Proposition 8. The space Sym® (V) can be thought of as the space of
degree-k polynomials over V', with product given by polynomial multiplica-
tion with respect to any given choice of basis. In particular, Symk(V) has
the following properties.

I. The map (z1,...,z%) = 2122 - - - 13, from VF Symk(V) is bilinear.

Il. 25(1)Tg(2) " Tok) = T122 - - Tk for any permutation o.

I If {vy,...,v,} form a basis for V, then any element of Sym* (V')
can be written as a polynomial of degree k in terms of the basis
elements.

IV. There is a bilinear map Sym® (V) x Sym®(V) — Sym®**(V) sending
(.I‘ll'g T, Y1Y2 yb) > T1T9 - TayY1Y2 - Yp-
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8 The Skew-Symmetric Tensor Algebra

Consider taking the tensor product V@ V of V' with itself. We can define a
different type of tensor product by imposing the additional relation vy ® vy =
—vy ® v1. Define A; = span{ Ay, (v1 ® v2) + (v2 ® v1)}, and write

VAV =A/A

Pure tensors in V AV are written using the wedge product notation
v1 A vg to emphasize that we have skew-symmetry.

Example 13, (Differential Forms). Consider the vector space V = C(U —
R) of continuous, real valued functions on an open set U C R%. The module
of 1-forms on U is the module

Span{flxl 4+ fndxn}

and the module of k-forms is the wedge product of this module with itself
k times. Skew-symmetry ensures dx; A dre = —dxo A dxy.

Example 14, (Wedge Powers). If {v1,...,v,} form a basis for V, then
the skew-symmetric tensor product V' A V' is spanned by the vectors v; A v;

with ¢ < j. Write /\k V for the wedge product of V' with it_self k times. If
dimV = n, then dim A"V = (dhz V). In particular, dim AV =1,

Example 15, (Determinant). Let 7' : V' — V be linear. Then
dim V' dim V' dim V'
/\T:(/\ V>—></\ V)
Since the dimension of each of the vector spaces on the right is one, this is

just multiplication by a scalar! We can define the determinant as simply
det T = A"V T.

8.1 Exterior Product

Definition 5. The exterior algebra over a vector space V is the collection

0 1 2
AVy=A\ve AveAve..-

The exterior forms a ring under the wedge product operation. A vector
space over F with the structure of a ring is called an F-algebra.

Proposition 9. If o € AV and 8 € A"V, then a A B = (=1)(B A a).

8.2 Linear Transformations

Theorem 4. Let V, M be vector spaces over F. For any k-linear alternating
function ¢ : V¥ — M, there is a unique ¢ : /\k V' — M such that

d(v1 Ava A+ Avg) = d(v1,v2, ..., V) forallvy,...,vp €V
Moreover, every linear map /\]€ V — M arises in this manner.

Proposition 10. There is a bilinear map A"V x A\°V — A"’V such
that
a b

Vi, w; | =V A ANvg Awp A== Awy
=1 j=1

2

J

11
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8.3 Linear Independence

A square matrix has nonzero determinant if and only if its rows are linearly
independent. The wedge product generalizes this idea.

Theorem 5. A set of vectors {vy,...,vx} € V is linearly independent if
and only if vy Avg A -+~ Avp 0 € /\kV.
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