Infimum

Definition 1. We write $\inf A=\lambda$ when $\lambda \in \mathbb{R}$ is the greatest lower bound of $A \subset \mathbb{R}$, that is,
I. $\forall a \in A, \lambda \leq a$
II. $\forall \varepsilon>0, \exists a \in A, a<\lambda+\varepsilon$
$\inf A \leq \lambda \Longleftrightarrow \forall \varepsilon>0, \exists a \in A, a \leq \lambda+\varepsilon$

Let $\varepsilon>0$ and $\delta=\lambda-\inf A \geq 0$. Then there exists $a \in A$ such that $a \leq \inf A+(\varepsilon+\delta)=\lambda+\varepsilon$. \Longleftarrow Assume $\inf A>\lambda$ and let $\varepsilon=\inf A-\lambda>0$; then there exists $a \leq \lambda+\frac{\varepsilon}{2}<\inf A$, a contradiction!
$\inf A<\lambda \Longleftrightarrow \exists a \in A, a<\lambda$

Suppose $\inf A<\lambda$. Choose $\varepsilon<\lambda-\inf A$. Then there exists $a \in A$ such that $a<\inf A+\varepsilon<\lambda$. \Longleftarrow Suppose $a \in A$ with $a<\lambda$. We can't have $\inf A \geq \lambda$, otherwise $a \geq \inf A \geq \lambda!$

$$
\inf A \geq \lambda \Longleftrightarrow \forall a \in A, a \geq \lambda
$$

\Longrightarrow If $\inf A \geq \lambda$, then each $a \geq \inf A \geq \lambda$.
\Longleftarrow If λ is a lower bound, the greatest lower bound must be at least as large, so $\inf A \geq \lambda$.

$$
\inf A>\lambda \Longleftrightarrow \exists \varepsilon>0, \forall a \in A, a \geq \lambda+\varepsilon
$$

\Longrightarrow Suppose $\inf A>\lambda$. Let $\varepsilon=\inf A-\lambda$. Then each $a \geq \inf A=\lambda+\varepsilon$.
\Longleftarrow Suppose $\forall a \in A, a \geq \lambda+\varepsilon$ where $\varepsilon>0$. Then by the above result, $\inf A \geq \lambda+\varepsilon>\lambda$.

Supremum

Definition 2. Similarly, we write $\sup A=\mu$ for the least upper bound of $A \subset \mathbb{R}$,
I. $\forall a \in A, a \leq \mu$
II. $\forall \varepsilon>0, \exists a \in A, a>\mu-\varepsilon$
$\sup A \geq \lambda \Longleftrightarrow \forall \varepsilon>0, \exists a \in A, a \geq \lambda-\varepsilon$
\Longrightarrow Let $\varepsilon>0$ and $\delta=\sup A-\lambda \geq 0$. Then there exists $a \in A$ such that $a \geq \sup A-(\varepsilon+\delta)=\lambda-\varepsilon$. \Longleftarrow Assume $\sup A<\lambda$ and let $\varepsilon=\lambda-\sup A>0$; there exists $a \geq \lambda-\frac{\varepsilon}{2}>\sup A$, a contradiction!

$$
\sup A>\lambda \Longleftrightarrow \exists a \in A, a>\lambda
$$

\Longrightarrow Suppose $\sup A>\lambda$. Choose $\varepsilon<\sup A-\lambda$. Then there exists $a \in A$ such that $a>\sup A-\varepsilon>$ λ.
\Longleftarrow Suppose $a \in A$ with $a>\lambda$. We can't have $\sup A \leq \lambda$, otherwise $a \leq \sup A \leq \lambda!$

$$
\sup A \leq \lambda \Longleftrightarrow \forall a \in A, a \leq \lambda
$$

\Longrightarrow If $\sup A \leq \lambda$, then each $a \leq \sup A \leq \lambda$.
\Longleftarrow If λ is an upper bound, the least upper bound can be no larger, so $\sup A \leq \lambda$.

$$
\sup A<\lambda \Longleftrightarrow \exists \varepsilon>0, \forall a \in A, a \leq \lambda-\varepsilon
$$

\Longrightarrow Suppose $\sup A<\lambda$. Let $\varepsilon=\lambda-\sup A$. Then each $a \leq \sup A=\lambda-\varepsilon$.
\Longleftarrow Suppose $\forall a \in A, a \leq \lambda-\varepsilon$ where $\varepsilon>0$. Then by the above result, $\sup A \geq \lambda+\varepsilon>\lambda$.

