Benjamin R. Bray

June 6, 2017

Hilbert Projection Theorem

Lemma 1, (Hilbert Projection, Euclidean Case). Every nonempty, closed, and convex $K \subset \mathbb{R}^n$ contains a unique vector of minimum L_2 norm.

Proof. See Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12 for a proof of the general case.

Separating Hyperplane Theorem

Theorem 1, (Separating Hyperplane Theorem). Suppose $A, B \subset \mathbb{R}^n$ are disjoint, convex, and nonempty. Then there exist $c \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$ such that C and D lie on opposite sides (closed half-spaces) of the **separating hyperplane** $\mathcal{H} = \{x \in \mathbb{R}^n \mid v^T x = c\}$, that is, $v^T x \ge c$ and $v^T y \le c$ for all $x \in A, y \in B$.

(1) Consider the Minkowski sum $K \equiv A + (-B) = \{x - y \mid x \in A, y \in B\}.$

- (a) K and its closure \overline{K} are convex, being the sum of two convex sets A and -B.
- (b) K contains the zero vector if and only if sets A and B intersect.
- (c) \overline{K} may contain the zero vector even if A and B are disjoint but infinitesimally close.
- (2) Reduction: It suffices to show $\langle u, v \rangle \ge 0$ for all $u \in K$ and some nonzero $v \in \mathbb{R}^n$, the separating axis.
 - (a) Equivalently, $\langle x y, v \rangle \ge 0$ for all $x \in A, y \in B$, by construction of K.
 - (b) Then, by linearity and properties of sup and inf [1],

$$\begin{split} \langle x,v\rangle_2 &\geq \langle y,v\rangle_2 & \forall \ y\in B, x\in A \\ \langle x,v\rangle_2 &\geq \sup_{y\in B} \langle y,v\rangle_2 & \forall \ x\in A \\ \inf_{x\in A} \langle x,v\rangle_2 &\geq \sup_{y\in B} \langle y,v\rangle_2 \end{split}$$

(c) Choose c between (or equal to) the values above to obtain a separating hyperplane.

- (3) <u>Reduction</u>: It suffices to show $\|v\|_2 \leq \|v+t(u-v)\|_2$ for some nonzero $v \in \mathbb{R}^n$ and every $u \in K, t \in [0,1]$.
 - (a) Then, $\|v\|_2^2 \le \|v\|_2^2 + 2t\langle v, u v \rangle_2 + t^2 \|u v\|_2^2$. (b) For $0 < t \le 1$ we thus have $0 \le 2\langle v, u \rangle_2 - 2\|v\|_2^2 + t\|u - v\|_2^2$.
 - (c) Letting $t \to 0$ gives $\langle u, v \rangle \ge ||v||_2^2 \ge 0$ for all $u \in K$, and we may apply the previous claim.
- (4) <u>Case</u>: Separation holds when dist(A, B) > 0. This includes the special case where both A and B are closed and one is bounded.
 - (a) Let $v \in \overline{K}$ be the unique vector in \overline{K} of smallest norm given by the Hilbert projection theorem.
 - (b) Because dist(A, B) > 0, \overline{K} cannot contain the origin and so v is nonzero.
 - (c) Since \overline{K} is convex, for any $u \in K$ the line segment v + t(u v) lies in \overline{K} for any $0 \le t \le 1$.
 - (d) By minimality of v, $||v||_2 \le ||v + t(u v)||_2$. Using the second reduction above, we are done.
- (5) Case: Separation holds when dist(A, B) = 0 and the interior K° is nonempty.
 - (a) Then, the interior can be written as a union of countably many nonempty, compact, convex subsets, $K^{\circ} = \bigcup_{j=1}^{\infty} K_k$. For example, $K_j = \overline{(1 \frac{1}{j})K} \cap \overline{B(0, j)}$.
 - (b) Let $v_j \in K_j$ be the unique vector of smallest norm in K_j given by the projection theorem.
 - (i) Since $0 \notin K^{\circ}$, we also have $0 \notin K_j$, so each v_j is nonzero.
 - (ii) By an argument similar to the previous case, $\langle u, v_j \rangle \ge 0$ for all $u \in K_j$.
 - (c) Normalize the v_j to have unit length. By compactness of the unit sphere, the sequence $(v_j)_{j=1}^{\infty}$ has a subsequential limit $v \in \mathbb{R}^n$, which is nonzero.
 - (d) By continuity of inner products, $\langle u, v \rangle \ge 0$ for all $u \in K$, and we are done.
- (6) <u>Case</u>: Finally, if K has empty interior, then K is entirely contained by some hyperplane $\langle \cdot, v \rangle = c$, which we may used for (weak) separation.

Separating Axis Theorem

Theorem 2, (Separating Axis Theorem, 2D). Suppose $A, B \subset \mathbb{R}^2$ are disjoint, convex, compact polygons. Then there exists a separating line with normal vector orthogonal to one of the edges of the Minkowski sum A + (-B).

Proof. Adapted from an answer on Math StackExchange, see https://math.stackexchange.com/q/2106402.

- (1) <u>Choosing the Axis.</u> The Minkowski sum K = A + (-B) is also a compact, convex polygon, so we can express $K = \bigcap_{k=1}^{n} \mathcal{H}_k$ as the intersection of finitely many closed half-planes $\mathcal{H}_k \subset \mathbb{R}^n$. Since $A \cap B = \emptyset$, we have $0 \notin K$, and accordingly $0 \notin \mathcal{H}_k$ for some k. Therefore, the vector $v \in \mathcal{H}_k$ of smallest norm given by the projection theorem is nonzero.
- (2) <u>Orthogonality</u>. Denote by $\ell_k \subset \mathcal{H}_k$ the line corresponding to half-plane \mathcal{H}_k . Let $w \in \mathbb{R}^n$ be a unit vector in the direction of ℓ_k . Then, $v \alpha w \in \ell_k$ for all $\alpha \in \mathbb{R}$, and by minimality of v,

$$\|v\|_{2}^{2} \leq \|v - \alpha w\|_{2}^{2} = \|v\|_{2}^{2} - 2\alpha \langle v, w \rangle_{2} + \alpha^{2}$$

Choosing $\alpha = \langle v, w \rangle$, we find that $\|v\|_2^2 \le \|v\|_2^2 - \langle v, w \rangle_2^2$, hence $\langle v, w \rangle = 0$ and $v \perp \ell_k$.

(3) <u>Separation</u>. From the proof of the hyperplane separation theorem, it suffices to show $||v||_2^2 \le ||v+t(x-v)||_2^2$ for all $x \in K$ and $0 \le t \le 1$. Recall $K \subset \mathcal{H}_k$, so by convexity, $v + t(x - v) \in \mathcal{H}_k$. By minimality of v, the desired inequality holds and we are done!

Corollary 1. Suppose $A, B \subset \mathbb{R}^2$ are disjoint, convex, compact polygons. Then there exists a separating line with normal vector orthogonal to one of the edges of A or B.

Theorem 3, (Separating Axis Theorem, General Case). Suppose $A, B \subset \mathbb{R}^n$ are disjoint, convex, compact polytopes. Then there exists a separating hyperplane with normal vector orthogonal to one of the facets of the Minkowski sum A + (-B).

References

- [1] Benjamin R. Bray. Inequalities with sup and inf. Notes, June 2017.
- [2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- [3] Jiří Matoušek. Lectures on Discrete Geometry, volume 212. Springer Science & Business Media, 2002.
- [4] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.