Hilbert Projection Theorem

Lemma 1, (Hilbert Projection, Euclidean Case). Every nonempty, closed, and convex $K \subset \mathbb{R}^{n}$ contains a unique vector of minimum L_{2} norm.

Proof. See Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12 for a proof of the general case.

Separating Hyperplane Theorem

Theorem 1, (Separating Hyperplane Theorem). Suppose $A, B \subset \mathbb{R}^{n}$ are disjoint, convex, and nonempty. Then there exist $c \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^{n}$ such that C and D lie on opposite sides (closed half-spaces) of the separating hyperplane $\mathcal{H}=\left\{x \in \mathbb{R}^{n} \mid v^{T} x=c\right\}$, that is, $v^{T} x \geq c$ and $v^{T} y \leq c$ for all $x \in A, y \in B$.
(1) Consider the Minkowski sum $K \equiv A+(-B)=\{x-y \mid x \in A, y \in B\}$.
(a) K and its closure \bar{K} are convex, being the sum of two convex sets A and $-B$.
(b) K contains the zero vector if and only if sets A and B intersect.
(c) \bar{K} may contain the zero vector even if A and B are disjoint but infinitesimally close.
(2) Reduction: It suffices to show $\langle u, v\rangle \geq 0$ for all $u \in K$ and some nonzero $v \in \mathbb{R}^{n}$, the separating axis.
(a) Equivalently, $\langle x-y, v\rangle \geq 0$ for all $x \in A, y \in B$, by construction of K.
(b) Then, by linearity and properties of sup and inf [1],

$$
\begin{array}{rrr}
\langle x, v\rangle_{2} & \geq\langle y, v\rangle_{2} & \forall y \in B, x \in A \\
\langle x, v\rangle_{2} & \geq \sup _{y \in B}\langle y, v\rangle_{2} & \forall x \in A \\
\inf _{x \in A}\langle x, v\rangle_{2} & \geq \sup _{y \in B}\langle y, v\rangle_{2} &
\end{array}
$$

(c) Choose c between (or equal to) the values above to obtain a separating hyperplane.
(3) Reduction: It suffices to show $\|v\|_{2} \leq\|v+t(u-v)\|_{2}$ for some nonzero $v \in \mathbb{R}^{n}$ and every $u \in K, t \in[0,1]$.
(a) Then, $\|v\|_{2}^{2} \leq\|v\|_{2}^{2}+2 t\langle v, u-v\rangle_{2}+t^{2}\|u-v\|_{2}^{2}$.
(b) For $0<t \leq 1$ we thus have $0 \leq 2\langle v, u\rangle_{2}-2\|v\|_{2}^{2}+t\|u-v\|_{2}^{2}$.
(c) Letting $t \rightarrow 0$ gives $\langle u, v\rangle \geq\|v\|_{2}^{2} \geq 0$ for all $u \in K$, and we may apply the previous claim.
(4) Case: Separation holds when $\operatorname{dist}(A, B)>0$. This includes the special case where both A and B are closed and one is bounded.
(a) Let $v \in \bar{K}$ be the unique vector in \bar{K} of smallest norm given by the Hilbert projection theorem.
(b) Because $\operatorname{dist}(A, B)>0, \bar{K}$ cannot contain the origin and so v is nonzero.
(c) Since \bar{K} is convex, for any $u \in K$ the line segment $v+t(u-v)$ lies in \bar{K} for any $0 \leq t \leq 1$.
(d) By minimality of $v,\|v\|_{2} \leq\|v+t(u-v)\|_{2}$. Using the second reduction above, we are done.
(5) Case: Separation holds when $\operatorname{dist}(A, B)=0$ and the interior K° is nonempty.
(a) Then, the interior can be written as a union of countably many nonempty, compact, convex subsets, $K^{\circ}=\bigcup_{j=1}^{\infty} K_{k}$. For example, $K_{j}=\overline{\left(1-\frac{1}{j}\right) K} \cap \overline{B(0, j)}$.
(b) Let $v_{j} \in K_{j}$ be the unique vector of smallest norm in K_{j} given by the projection theorem.
(i) Since $0 \notin K^{\circ}$, we also have $0 \notin K_{j}$, so each v_{j} is nonzero.
(ii) By an argument similar to the previous case, $\left\langle u, v_{j}\right\rangle \geq 0$ for all $u \in K_{j}$.
(c) Normalize the v_{j} to have unit length. By compactness of the unit sphere, the sequence $\left(v_{j}\right)_{j=1}^{\infty}$ has a subsequential limit $v \in \mathbb{R}^{n}$, which is nonzero.
(d) By continuity of inner products, $\langle u, v\rangle \geq 0$ for all $u \in K$, and we are done.
(6) Case: Finally, if K has empty interior, then K is entirely contained by some hyperplane $\langle\cdot, v\rangle=c$, which we may used for (weak) separation.

Separating Axis Theorem

Theorem 2, (Separating Axis Theorem, 2D). Suppose $A, B \subset \mathbb{R}^{2}$ are disjoint, convex, compact polygons. Then there exists a separating line with normal vector orthogonal to one of the edges of the Minkowski sum $A+(-B)$.

Proof. Adapted from an answer on Math StackExchange, see https://math.stackexchange.com/q/2106402.
(1) Choosing the Axis. The Minkowski sum $K=A+(-B)$ is also a compact, convex polygon, so we can express $K=\bigcap_{k=1}^{n} \mathcal{H}_{k}$ as the intersection of finitely many closed half-planes $\mathcal{H}_{k} \subset \mathbb{R}^{n}$. Since $A \cap B=\emptyset$, we have $0 \notin K$, and accordingly $0 \notin \mathcal{H}_{k}$ for some k. Therefore, the vector $v \in \mathcal{H}_{k}$ of smallest norm given by the projection theorem is nonzero.
(2) Orthogonality. Denote by $\ell_{k} \subset \mathcal{H}_{k}$ the line corresponding to half-plane \mathcal{H}_{k}. Let $w \in \mathbb{R}^{n}$ be a unit vector in the direction of ℓ_{k}. Then, $v-\alpha w \in \ell_{k}$ for all $\alpha \in \mathbb{R}$, and by minimality of v,

$$
\|v\|_{2}^{2} \leq\|v-\alpha w\|_{2}^{2}=\|v\|_{2}^{2}-2 \alpha\langle v, w\rangle_{2}+\alpha^{2}
$$

Choosing $\alpha=\langle v, w\rangle$, we find that $\|v\|_{2}^{2} \leq\|v\|_{2}^{2}-\langle v, w\rangle_{2}^{2}$, hence $\langle v, w\rangle=0$ and $v \perp \ell_{k}$.
(3) Separation. From the proof of the hyperplane separation theorem, it suffices to show $\|v\|_{2}^{2} \leq\|v+t(x-v)\|_{2}^{2}$ for all $x \in K$ and $0 \leq t \leq 1$. Recall $K \subset \mathcal{H}_{k}$, so by convexity, $v+t(x-v) \in \mathcal{H}_{k}$. By minimality of v, the desired inequality holds and we are done!

Corollary 1. Suppose $A, B \subset \mathbb{R}^{2}$ are disjoint, convex, compact polygons. Then there exists a separating line with normal vector orthogonal to one of the edges of A or B.

Theorem 3, (Separating Axis Theorem, General Case). Suppose $A, B \subset \mathbb{R}^{n}$ are disjoint, convex, compact polytopes. Then there exists a separating hyperplane with normal vector orthogonal to one of the facets of the Minkowski sum $A+(-B)$.

References

[1] Benjamin R. Bray. Inequalities with sup and inf. Notes, June 2017.
[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[3] Jiří Matoušek. Lectures on Discrete Geometry, volume 212. Springer Science \& Business Media, 2002.
[4] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

