
Benjamin R. Bray Minimax Approximation Theory November 27, 2016

First formalized by Weierstrass in 1885, approximation theory concerns the best approximation of
arbitrary functions by some class of simpler functions. Weierstrass was originally interested in the approx-
imation of complex-analytic functions by power series, but his explorations lead him to prove that both
algebraic and trigonometric polynomials are dense in the space of continuous functions. The structure of
an approximation problem involves three central components: a function class containing the function to
be approximated, a form of approximating function, and a norm for measuring approximation error. Three
types of approximation are commonly sought after [1]:

Definition 1. Let U be a subspace of some normed linear F , and fix f ∈ F . Then,

I. A function p∗ ∈ U is a good approximation with error ε > 0 if ||f − p∗|| < ε.
II. A function p∗B ∈ U is a best approximation if ||f − p∗|| ≤ ||f − p|| for any other p ∈ U .
III. A function p∗N ∈ U is a near-best approximation if ||f − p∗N || ≤ (1 + ρ)||f − p∗B || for small ρ > 0.

In these notes, we seek to approximate the class C[a, b] of continuous functions on the interval [a, b] by
degree-n polynomials in Pn using the L∞-norm to measure fit. This scenario is referred to as minimax
polynomial approximation, since the best (or minimax) approximation solves

p∗n = arg min
pn∈Pn

max
a≤x≤b

|f(x)− pn(x)| (1)

The Alternating Property of Minimax Polynomials
Minimax approximating polynomials of degree n are characterized by the alternating property, which
requires that the approximation error oscillates between its equal maximum and minimum values a total of
n + 2 times. This result, which we will prove rigorously later, seems outright preposterous at first glance!
Chebyshev’s original notes (1854) were apparently rather haphazard [2]; we owe our modern understanding
of this remarkable fact to Kirchberger (1903), Borel (1905), Haar (1918), and de La Vallée Poussin (1918).

Definition 2. An alternating set for ϕ ∈ C[a, b] is a sequence a ≤ x1 < · · · < xn ≤ b of distinct points
alternating between ±||ϕ||∞, that is, |ϕ(xk)| = ||ϕ||∞ and ϕ(xk+1) = −ϕ(xk).

Definition 3. The polynomial approximation pn ∈ Pn to f ∈ C[a, b] is said to satisfy the alternating
property if there is an alternating set of at least n+ 2 points for the function f − pn ∈ C[a, b].

It is easy to see that at least two alternating points must exist for any minimax approximation. Otherwise,
there is some “wiggle room” left over that can be used to construct a better approximation simply by shifting
the original, as in Figure 1 below.
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Figure 1: Unless two alternating points exist, we can always find a better approximation.
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Lemma 1 (following [1]). Suppose p∗ ∈ Pn is the best approximation to f ∈ C[a, b] out of Pn. Then f has
two alternating points, that is, there are at least two distinct points x1, x2 ∈ [a, b] such that

f(x1)− p(x1) = p(x2)− f(x2) = ||f − p||∞

(1) The function |f − p∗| is continuous with compact support, so attains its maximum value ||f − p∗||∞ at
some point x1 ∈ [a, b]. Define the upper and lower approximation errors

ε+ = max
a≤x≤b

f(x)− p∗(x) ε− = min
a≤x≤b

f(x)− p∗(x)

(2) Assume towards contradiction that ε+ 6= ε−. We may take the upper margin to be larger,

f(x1)− p∗(x1) = ||f − p||∞ = ε+ > −ε−

(3) In particular, ε+ + ε− > 0 and so q = p∗ + (ε+ + ε−)/2 ∈ Pn is distinct from p∗. It is clear that

||f − q||∞ ≤
(
ε+ + ε−

2

)
< ε+ = ||f − p∗||∞

(4) Therefore, q is a better approximation to f than p∗, a contradiction!

From the lemma, it is not too difficult to prove that the best approximating constant to a function
f ∈ C[a, b] is the average of its maximum and minimum values. Similar reasoning applies for the best
degree-n approximating polynomial, provided that we have a large enough alternating set. Before proving
the equioscillation theorem, we characterize best approximations by a related property of the extreme set1.

Theorem 1 (Kolmogorov Criterion). Let U be a finite-dimensional subspace of C[K], with K compact. Then
a function p∗ ∈ U is a best approximation to f ∈ C[K] if and only if no other approximation q ∈ U has the
same sign as f − p∗ on its extreme set Zf−p∗ = {x ∈ K | |f(x)− p∗(x)| = ||f − p||∞}. That is,

min
x∈Z

[f(x)− p∗(x)]q(x) ≤ 0 ∀ q ∈ U

Proof. Note that p∗ ∈ U is a best approximation to f ∈ C[K] if and only if 0 ∈ U is a best approximation to
ϕ = f − p∗. Therefore, it suffices prove 0 is a best approximation to ϕ ∈ C[K] if and only if no other q ∈ U
has the same sign as ϕ on its extreme set.

(1) ⇐= Suppose 0 ∈ U is not a best approximation to ϕ ∈ C[K].
(a) Then there is a better approximation q ∈ U with ||ϕ− q||∞ < ||ϕ||∞.
(b) For any x ∈ Zϕ in the extreme set, unless signϕ(x) = sign q(x), we must have

|ϕ(x)− q(x)| ≥ |ϕ(x)| = ||ϕ||∞

(c) This would imply ||ϕ− q||∞ > ||ϕ||∞, a contradiction! Thus sign q agrees with signϕ on Zϕ.

For the converse, we demonstrate that any function violating the Kolmogorov criterion can be modified to
yield a better approximation. If q has the same sign as ϕ on its extreme set and we subtract a sufficiently
small multiple of q from ϕ, the difference will be of strictly smaller magnitude than ϕ near the extreme set.
Provided that the multiple we subtract is small enough, the difference will not exceed the extreme value
outside the extreme set, giving a strictly better approximation.

1At this point, it would be nice to reason inductively about minimax polynomials, perhaps applying Lemma 1 to polynomials
of successively lower degree, stopping at zero. Unfortunately, such a satisfying proof eludes me.

2



Benjamin R. Bray Minimax Approximation Theory November 27, 2016

(2) =⇒ Suppose 0 ∈ U is a best approximation to ϕ ∈ C[K].
(a) Assume towards contradiction that Kolmogorov’s criterion fails. Then for some ε > 0 and q ∈ U ,

ϕ(x)q(x) = ||ϕ||∞q(x) > 2ε ∀x ∈ Zϕ

(b) Because ϕ is continuous, there is an open set G ⊂ K containing Z on which

ϕ(x)q(x) > ε ∀x ∈ G

(c) Claim: The function ϕ− λq ∈ U is a better approximation to f than zero is, for some λ > 0.
(i) For any x ∈ G in a neighborhood of the extreme set, we have

|ϕ(x)− λq(x)|2 = (ϕ(x)− λq(x))2 (2)
= ϕ(x)2 − 2λϕ(x)q(x) + λ2q(x)2 (3)
< ||ϕ||2∞ − λε+ λ2||q||2∞ (4)
= ||ϕ||2∞ − λ(ε− λ||q||2∞) (5)

thus if 0 < λ < ε/||q||2∞, we have ||ϕ− λq||∞ < ||ϕ||∞.
(ii) The complement F ≡ K \ G contains no extreme points Z, so |ϕ(x)| < ||ϕ||∞ on F .

Because F is closed, there exists δ > 0 such that

|ϕ(x)| < ||ϕ(x)||∞ − 2δ ∀x ∈ K \G

(iii) Therefore, if λ < δ/||q||∞, then for any x ∈ K \G,

|ϕ(x)− λq(x)| ≤ |ϕ(x)|+ λ|q(x)|
< ||ϕ||∞ − 2δ + λ||q||∞
< ||ϕ||∞ − δ

(iv) Together, we find that if λ < min
{

ε
||q||2∞

, δ
||q||∞

}
, then ||ϕ− λq||∞ < ||ϕ||∞.

(d) This is a contradiction! Thus every best approximation satisfies Kolmogorov’s criterion.

Corollary 1 (Kolmogorov Criterion, Restated). Let U be a finite-dimensional subspace of C[K], with K
compact. Then a function p∗ ∈ U is a best approximation to f ∈ C[K] if and only if

max
x∈Z

[f(x)− p∗(x)]q(x) ≥ 0 ∀ q ∈ U

We now establish a series of results which assert that for pn to be a best approximation, it is both necessary
and sufficient that the alternating property holds, that only one polynomial has this property, and that there
is only one best approximation [1].

Theorem 2 (Chebyshev Equioscillation). A polynomial p∗ ∈ Pn is a best approximation to f ∈ C[a, b] if
and only if there is an alternating set for f − p consisting of at least n+ 2 points.

(1) =⇒ Suppose ϕ ≡ f − p∗ takes the value ||ϕ||∞ on only m < n+ 2 points.
(a) We will apply Kolmogorov’s criterion to show that there is a better approximation of degree m.
(b) Let Zϕ be the extreme set of ϕ = f − p∗, and define high and low points of ϕ as

Zhigh = {x ∈ [a, b] | ϕ(x) = ||ϕ||∞} Zlow = {x ∈ [a, b] | ϕ(x) = −||ϕ||∞}

(c) By hypothesis, there exist disjoint open intervals U1, . . . , Um ⊂ [a, b] covering Zϕ such that
(i) each interval contains either only low points or only high points, and
(ii) adjacent intervals contain extreme points of opposite sign.

(d) Assume that U1 contains only high points. Construct the offending polynomial q ∈ Pn as follows:
(i) Select points zk between adjacent intervals, such that U1 < z1 < U2 < · · · < zm−1 < Um.
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(ii) Define q(x) =
∏m−1
k=1 (zk − x) of degree m− 1 ≤ n.

(e) Observe that q has the same sign as ϕ on the extreme set Zϕ, since q alternates sign across adjacent
intervals Uk, starting out positive. Noting that Pn is a subspace of C[a, b], Kolmogorov’s criterion
tells us that the polynomial p∗ ∈ Pn cannot be a best approximation to f .

(f) This is a contradiction! Thus at least m ≥ n+ 2 alternating points must exist.
(2) ⇐= Suppose the approximation p∗ ∈ Pn to f ∈ C[a, b] satisfies the alternating property.

(a) Then f − p∗ achieves its maximum magnitude at n+ 2 distinct points with alternating sign.
(b) Certainly, no other function q ∈ Pn has the same sign as f−p∗ on its extreme set, since a nonzero

element of Pn cannot have n+ 1 zeros. Thus p∗ ∈ Pn is a best approximation to f .

Note that because f − p∗ alternates n+ 2 times, it must have at least n+ 1 zeros, and thus p∗ actually
nterpolates f at some n+ 1 points. This theorem also applies more generally for a special class of function
spaces called Haar spaces, which share with polynomials the property that each function is uniquely
determined by its values on n+ 1 points. For example, a version of the equioscillation theorem derived for
trigonometric polynomials is commonly used to characterize minimax approximations for periodic functions.
It is worth noting that for algebraic polynomials, the number of alternating points required is dimPn + 1.

Uniqueness of Best Polynomial Approximation
Theorem 3 (Carothers, Thm. 4.5). The polynomial of best approximation to f ∈ C[a, b] out of Pn is unique.

Proof. Suppose p, q ∈ Pn are both best approximations to f ∈ C[a, b], satisfying ||f − p||∞ = ||f − q||∞ ≡ E.
Then, their average r ≡ p+q

2 ∈ Pn is also a best approximation, since f − r is the average of f − p and f − q.
By the Chebyshev equioscillation theorem, then, f − r has an alternating set x0, x1, . . . , xn+1 containing
n+ 2 points, and so

(f − p)(xk) + (f − q)(xk) = ±2E (alternating for k = 1, . . . , n) (6)

However, since |f − p| and |f − q| are bounded by E, we must have f − p = f − q on the extreme set. In
particular, the degree-n polynomial q − p has n+ 2 zeros, so must vanish. Hence q = p.
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