Property 1. $(I+P)^{-1}=(I+P)^{-1}(I+P-P)$

$$
=I-(I+P)^{-1} P
$$

Property 2. $P+P Q P=P(I+Q P)=(I+P Q) P$

$$
(I+P Q)^{-1} P=P(I+Q P)^{-1}
$$

Lemma 1, (Matrix Inversion, v1). For invertible A but general (rectangular) B, C, and D,

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B C D A^{-1}\left(I+B C D A^{-1}\right)^{-1}
$$

Proof. Using Property 1,

$$
\begin{array}{rlr}
(A+B C D)^{-1} & =\left[A\left(I+A^{-1} B C D\right)\right]^{-1} \\
& =\left[I+A^{-1} B C D\right]^{-1} A^{-1} \\
& =\left[I-\left(I+A^{-1} B C D\right)^{-1} A^{-1} B C D\right] A^{-1} & \text { (Property 1) } \\
& =A^{-1}-\left(I+A^{-1} B C D\right)^{-1} A^{-1} B C D A^{-1} &
\end{array}
$$

Repeatedly applying Property 2 produces

$$
\begin{align*}
(A+B C D)^{-1} & =A^{-1}-\left(I+A^{-1} B C D\right)^{-1} A^{-1} B C D A^{-1} \\
& =A^{-1}-A^{-1}\left(I+B C D A^{-1}\right)^{-1} B C D A^{-1} \\
& =A^{-1}-A^{-1} B\left(I+C D A^{-1} B\right)^{-1} C D A^{-1} \tag{1}\\
& =A^{-1}-A^{-1} B C\left(I+D A^{-1} B C\right)^{-1} D A^{-1} \\
& =A^{-1}-A^{-1} B C D\left(I+A^{-1} B C D\right)^{-1} A^{-1} \\
& =A^{-1}-A^{-1} B C D A^{-1}\left(I+B C D A^{-1}\right)^{-1}
\end{align*}
$$

Lemma 2, (Matrix Inversion, v2). For invertible A and C but general (rectangular) B and D,

$$
\begin{aligned}
(A+B C D)^{-1} & =A^{-1}-A^{-1} B\left(I+C D A^{-1} B\right)^{-1} C D A^{-1} \\
& =A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
\end{aligned}
$$

Lemma 3, (Matrix Inversion, v3). A different use of Property 2 gives

$$
\begin{array}{rlr}
(A+B C D)^{-1} B C & =\left[\left(I+B C D A^{-1}\right) A\right]^{-1} B C \\
& =A^{-1}\left(I+B C D A^{-1}\right)^{-1} B C \\
& =A^{-1} B\left(I+C D A^{-1} B\right)^{-1} C & \tag{Property2}\\
& =A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} & \text { (Property 2) } \\
\text { (for invertible } C \text {) }
\end{array}
$$

