Inner Product Spaces

Every inner product space has an induced norm $\|x\|=\sqrt{\langle x, y\rangle}$. The Cauchy-Schwarz inequality relates norms and inner products.

Theorem 1, (Cauchy-Schwarz). In an inner product space, $|\langle v, w\rangle| \leq\|v\|\|w\|$.
Proof. (see Tao [1]) In the real case, expanding $\|v-w\|^{2} \geq 0$ is enough. In the complex case, we use amplification. Expanding $\|v-w\|^{2} \geq 0$, we obtain

$$
\mathfrak{R e}\langle v, w\rangle \leq \frac{1}{2}\|v\|^{2}+\frac{1}{2}\|w\|^{2}
$$

Observe that the phase rotation $v \mapsto e^{i \theta} v$ preserves the right but not the left-hand side,

$$
\mathfrak{R e}\left\{e^{i \theta}\langle v, w\rangle\right\} \leq \frac{1}{2}\|v\|^{2}+\frac{1}{2}\|w\|^{2}
$$

Choose $\theta=-\arg \langle v, w\rangle$ to cancel out the phase of $\langle v, w\rangle$. Then,

$$
|\langle v, w\rangle| \leq \frac{1}{2}\|v\|^{2}+\frac{1}{2}\|w\|^{2}
$$

Now, amplify again with the homogenization symmetry $(v, w) \mapsto\left(\lambda v, \frac{1}{\lambda} w\right)$, for some $\lambda>0$, preserving the left-hand side but not the right,

$$
|\langle v, w\rangle| \leq \frac{\lambda^{2}}{2}\|v\|^{2}+\frac{1}{2 \lambda^{2}}\|w\|^{2}
$$

If $v, w \neq 0$, the minimum $\|v\|\|w\|$ is achieved when $\lambda^{2}=\|w\| /\|v\|$, giving the final inequality. If either is zero, the inequality holds in the limit $\lambda \rightarrow 0$ or $\lambda \rightarrow+\infty$.

The Cauchy-Schwarz inequality can be used to show that $\langle x, y\rangle$ is continuous in both arguments. It is natural to ask whether every norm comes from an inner product; in general, the answer is no, but the following exercises demonstrate that the parallelogram law for norms characterizes inner product spaces.

Exercise 1. (Parallelogram Law) For any inner product space,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

Exercise 2. (Polarization Identity) Show that a norm $\|\cdot\|$ satisfying the parallelogram law is induced by the inner product

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}+\|x-y\|^{2}\right)+\frac{i}{4}\left(\|x+i y\|^{2}+\|x-i y\|^{2}\right)
$$

Definition 1. An isometry is a distance-preserving map. Two inner product spaces are isomorphic if there is an invertible isometry between them.

Independence and Span

Definition 2. Vectors $\left\{v_{\alpha}\right\}_{\alpha \in A} \subset V$ are (algebraically) independent iff every non-trivial finite linear combination is non-zero, that is, $\sum_{k=1}^{n} v_{\alpha_{k}}$ is zero only when $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{C}$ are all zero.

Definition 3. The algebraic span of a collection $\mathcal{V} \subset V$ of vectors is the set of finite linear combinations of vectors in \mathcal{V}, denoted $\operatorname{span}(\mathcal{V})$. The closed span or Hilbert space span is $\overline{\operatorname{span}}(\mathcal{V})$.

Orthogonality

As expected, we call two vectors $v, w \in V$ orthogonal if $\langle v, w\rangle=0$, and orthonormal if both have unit length. The Pythagorean theorem $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ for orthogonal vectors follows easily from sesquilinearity. We also have the following familiar properties.

Exercise 3. Let V be an inner product space, and $x \in \operatorname{span}\left\{v_{\alpha}\right\}_{\alpha \in A}$.
I. Every orthonormal system $\left\{v_{\alpha}\right\}_{\alpha \in A}$ is algebraically independent.
II. (Inversion) $x=\sum_{\alpha \in A}\left\langle x, v_{\alpha}\right\rangle v_{\alpha}$ with finitely many non-zero terms.
III. (Plancherel) $\|x\|^{2}=\sum_{\alpha \in A}\left|\left\langle x, v_{\alpha}\right\rangle\right|^{2}$.

Exercise 4. (Gram-Schmidt) Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ be orthonormal in an inner product space. For any $x \notin \operatorname{span} \mathcal{B}$. there exists v_{n+1} orthogonal to \mathcal{B} such that $\operatorname{span}\left\{\mathcal{B}, v_{n+1}\right\}=\operatorname{span}\{\mathcal{B}, x\}$.

Hilbert Spaces

A Hilbert space \mathcal{H} is a complete real or complex inner product space. Unless otherwise stated, we take the metric topology on \mathcal{H} induced by the inner product. Naturally, a subspace of \mathcal{H} is a Hilbert space if and only if it is closed. In particular, proper dense subspaces cannot be Hilbert spaces. Inner product spaces are sometimes called pre-Hilbert spaces, since their unique completion is a Hilbert space.

Theorem 2, (Existence of Minimizers). Let $K \subset \mathcal{H}$ be non-empty, closed, and convex. For any $x \in \mathcal{H}$, there is a unique $y \in K$ of minimum distance $\|y-x\|$ to x. Further, for any $z \in K$ different from y, $\mathfrak{R e}\langle z-y, y-x\rangle \geq 0$.

Proof. Adapted from Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12.
(1) Uniqueness. Observe from the parallelogram law that if y_{1} and y_{2} are distinct and equidistant from x, then their midpoint $\frac{1}{2}\left(y_{1}+y_{2}\right)$ is strictly closer to x. Thus the minimizer, if it exists, is unique.
(2) Angle. If y is the distance minimizer and $z \in K$, the interpolant $(1-\theta) y+\theta z$ is at least as far from x as y for any $0<\theta<1$. Squaring and rearranging, we conclude $2 \mathfrak{R e}\langle z-y, y-x\rangle+\theta\|z-y\|^{2} \geq 0$. In the limit $\theta \rightarrow 0$ we obtain the desired inequality.
(3) Existence. Define $D \equiv \inf _{y \in K}\|x-y\| \in[0,+\infty)$. By definition of infimum, there is a sequence $y_{1}, y_{2}, \ldots \in K$ whose distances approach the infimum, $\left\|x-y_{k}\right\| \rightarrow D$. In fact, this sequence is Cauchy, and therefore converges to some $y \in \mathcal{H}$ with $\|x-y\|=D$. Since K is closed, $y \in K$ must be the minimizer.

Orthogonal Projections

Corollary 1, (Orthogonal Projections). Let $V \preccurlyeq \mathcal{H}$ be a closed subspace. Then each $x \in \mathcal{H}$ can be expressed uniquely as $x=x_{/ /}+x_{\perp}$, where x_{\perp} is orthogonal to each $v \in V$ and $x_{/ /} \in V$ is called the orthogonal projection.

Proof. We show that $x_{/ /}$must be the distance minimizer from V to x.
(1) Uniqueness. Suppose such a decomposition exists. Since $x_{/ /} \in V$, we have $x_{/ /}-v \in V$ for any $v \in V$. Thus x_{\perp} is orthogonal to $x_{/ /}-v$, and by the Pythagorean theorem,

$$
\begin{aligned}
\|x-v\|^{2} & =\left\|\left(x-x_{/ /}\right)+\left(x_{/ /}-v\right)\right\|^{2} \\
& =\left\|x-x_{/ /}\right\|^{2}+\left\|x_{/ /}-v\right\|^{2} \geq\left\|x-x_{/ /}\right\|^{2}
\end{aligned}
$$

Therefore, our only choice for $x_{/ /}$is the unique distance minimizer, making $x_{\perp}=x-x_{/ /}$unique as well.
(2) Existence. It remains to show that $x_{\perp}=x-x_{/ /}$satisfies the orthogonality condition when $x_{/ /}$is the closest point in V to x. Since V is a subspace, for any $v \in V$ and $\lambda \in \mathcal{C}$, we have $x_{/ /}+\lambda v \in V$. Thus

$$
\begin{aligned}
\left\|x-x_{/ /}\right\|^{2} & \leq\left\|x-\left(x_{/ /}+\lambda v\right)\right\|^{2} \\
& =\left\|x-x_{/ /}\right\|^{2}+|\lambda|^{2}\|v\|^{2}-2 \mathfrak{R e}\left\{\lambda\left\langle v, x_{\perp}\right\rangle\right\}
\end{aligned}
$$

Then $|\lambda|^{2}\|v\|^{2} \geq 2 \mathfrak{R e}\left\{\lambda\left\langle v, x_{\perp}\right\rangle\right\}$. Choose $\lambda \in \mathcal{C}$ to cancel the phase of $\left\langle v, x_{\perp}\right\rangle$ and send $\lambda \rightarrow 0$ to obtain $\left\langle v, x_{\perp}\right\rangle=0$.

Remark 1. The orthogonal projection operator $\pi_{V}: \mathcal{H} \rightarrow V$ is a linear contraction, and in particular is a bounded, self-adjoint linear operator on \mathcal{H}. More to be said later.

Orthogonal Complements

Property 1. The orthogonal complement of a subspace $V \preccurlyeq \mathcal{H}$ is the set V^{\perp} of vectors in \mathcal{H} that are orthogonal to every element of V. Then,
I. V^{\perp} is a closed subspace of \mathcal{H} and $(\bar{V})^{\perp}=V^{\perp}$.
II. $\left(V^{\perp}\right)^{\perp}=\bar{V}$.
III. $V^{\perp}=\{0\}$ if and only if V is dense in \mathcal{H}.
IV. If V is closed, then $\mathcal{H} \cong V \oplus V^{\perp}$.
V. Closed $W, V \preccurlyeq \mathcal{H}$ satisfy $(V+W)^{\perp}=V^{\perp} \cap W^{\perp}$.
VI. Closed $W, V \preccurlyeq \mathcal{H}$ satisfy $(V \cap W)^{\perp}=\overline{V^{\perp}+W^{\perp}}$.

Proof. The proofs are similar to the finite-dimensional case.
$\underline{\text { Part I. } V^{\perp} \text { is clearly a subspace and closed by continuity of inner products. The }}$ inclusion $V \subset \bar{V}$ gives $(\bar{V})^{\perp} \subseteq V^{\perp}$. Conversely, suppose $x \in V^{\perp}$. Since \mathcal{H} is a metric space, each $v \in \bar{V}$ is the limit of some sequence $\left(v_{n}\right) \subset V$. By continuity again, $\langle x, v\rangle=\lim \left\langle x, v_{n}\right\rangle=0$, so $x \in \bar{V}^{\perp}$.
Part II. Decompose $x \in\left(V^{\perp}\right)^{\perp}$ as $x=x_{/ /}+x_{\perp}$, where $x_{/ /} \in \bar{V}$ and $x_{\perp} \in(\bar{V})^{\perp}=$ V^{\perp}. Since $x \perp V^{\perp}$, we have $x_{\perp}=0$ and $x=x_{/ /} \in \bar{V}$. Conversely, each $x \in \bar{V}$ is the limit of vectors $x_{n} \in V$ orthogonal to V^{\perp}. By continuity of inner products, for any $w \in V^{\perp}$, we have $\langle x, w\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, w\right\rangle=0$. Hence $x \in\left(V^{\perp}\right)^{\perp}$.
Part III. If $V^{\perp}=\{0\}$, then $\bar{V}=\left(V^{\perp}\right)^{\perp}=\mathcal{H}$, so V is dense. Conversely, if V is dense and $x \in V^{\perp}$, then the continuous map $v \mapsto\langle v, x\rangle$ vanishes on the dense set V, so must be identically zero. The only vector orthogonal to all others is the zero vector, so $V^{\perp}=\{0\}$.
Part IV. TODO
Part V. TODO
Part VI. TODO

Linear Functionals

Theorem 3, (Riesz Representation). In a complex Hilbert space \mathcal{H}, every continuous linear functional $\varphi: \mathcal{H} \rightarrow \mathcal{C}$ is an inner product. That is, there is a unique $v \in \mathcal{H}$ such that $\varphi(\cdot)=\langle\cdot, v\rangle$. Furthermore, $\|\varphi\|_{o p}=\|v\|$.

Proof. This result should not be surprising; in finite dimensions, every linear functional analogously has the form $x \stackrel{\varphi}{\mapsto} c^{T} x$.
(1) Uniqueness. If $\varphi(\cdot)=\langle\cdot, w\rangle=\langle\cdot, v\rangle$, then $\langle\cdot, v-w\rangle \equiv 0$. Only the zero vector is orthogonal to all others, so we must have $v=w$.
(2) Existence. Assume $\varphi \not \equiv 0$ or the claim is obvious. By continuity, the proper subspace $\operatorname{ker} \varphi \preccurlyeq \mathcal{H}$ is closed. By Property 1 , the orthogonal complement contains a nonzero vector $w \in(\operatorname{ker} \varphi)^{\perp}$. Let $\|w\|=1$. Since $w \notin \operatorname{ker} \varphi$, we have $\varphi(w) \neq 0$. Now, for any $x \in \mathcal{H}$, the vector $x-\frac{\varphi(x)}{\varphi(w)} w$ lies in $\operatorname{ker} \varphi$, so must be orthogonal to w. Taking inner products, $\langle x, w\rangle-\frac{\varphi(x)}{\varphi(w)}=0$. Then $\varphi(x)=\langle x, \overline{\varphi(w)} w\rangle$, as desired.
(3) Norm. Let $\varphi(\cdot)=\langle\cdot, v\rangle$ and recall $\|\varphi\|_{o p}=\sup \frac{|\varphi(x)|}{\|x\|}$. For $x \in \mathcal{H}$, CauchySchwarz gives $|\varphi(x)|=|\langle x, v\rangle| \leq\|x\|\|v\|$; thus $\|\varphi\|_{o p} \leq\|v\|$. For the reverse direction, notice $\|\varphi\|_{o p} \geq|\varphi(v)| /\|v\|=\|v\|$.

Reproducing Kernel Hilbert Spaces

Riesz representation is fundamental to the theory of reproducing kernels in machine learning. Let $\mathcal{H}=\{f: \mathcal{X} \rightarrow \mathbb{R}\}$ be a Hilbert space of functions. The evaluation functional $\varphi_{x}: f \mapsto f(x)$ is always linear. If the evaluation functional $\varphi_{x}: f \mapsto f(x)$ has the additional property of being continuous, then \mathcal{H} is called a reproducing kernel Hilbert space. Intuitively, this means that

In an RKHS, functions close in norm are pointwise close.
This explains why the Lebesgue space $L^{2}(\mathbb{R})$ is not an RKHS, since L^{2} contains equivalence classes of functions which differ on arbitrary null sets. Examples of reproducing spaces include \mathbb{R}^{n} (interpreted as functions $[n] \rightarrow \mathbb{R}$) and the space ℓ_{2} of square-summable sequences.

Definition 4. A positive kernel is a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following properties:
I. (Symmetric) $k(x, y)=k(y, x)$ for all $x, y \in \mathcal{X}$
II. (Positive) For any $x=\left(x_{k}\right)_{k=1}^{n} \subset \mathcal{X}$ and scalars $\alpha=\left(\alpha_{k}\right)_{k=1}^{n} \in \mathbb{R}^{n}$,

$$
\alpha^{T} K(x) \alpha=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

In an RKHS, Riesz representation manifests itself in the following form:
Property 2, (Reproducing Property). To every reproducing kernel Hilbert space \mathcal{H}, there corresponds a unique positive kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}} \quad \forall x \in \mathcal{X}, f \in \mathcal{H}
$$

Proof. By hypothesis, evaluation $\varphi_{x}: f \mapsto f(x)$ is a continuous linear functional for any $x \in \mathcal{X}$. Riesz representation gives unique $g_{x} \in \mathcal{H}$ s.t.

$$
\varphi_{x}(f)=f(x)=\left\langle f, g_{x}\right\rangle_{H} \quad \forall x \in \mathcal{X}, f \in \mathcal{H}
$$

Consider the kernel defined by $k(x, \cdot)=g_{x}(\cdot)$ for all $x \in \mathcal{X}$. By applying the above property to the functions $g_{x}, g_{y} \in \mathcal{H}$, we see that this kernel inherits symmetry from the inner product on \mathcal{H},

$$
k(x, y)=g_{x}(y)=\left\langle g_{x}, g_{y}\right\rangle_{\mathcal{H}}=\left\langle g_{y}, g_{x}\right\rangle_{\mathcal{H}}=g_{y}(x)=k(y, x)
$$

Similarly, positivity arises from linearity and the positive-definite property of inner products:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)=\left\langle\sum_{i=1}^{n} \alpha_{i} g_{x_{i}}, \sum_{i=1}^{n} \alpha_{i} g_{x_{i}}\right\rangle_{\mathcal{H}} \geq 0
$$

Application: Feature Maps and the Representer Theorem

Above, we've gone from a reproducing space \mathcal{H} to a kernel $k(\cdot, \cdot)$. Conversely, (Schölkopf et al. 2001) show how to construct a unique reproducing kernel Hilbert space starting from only the kernel. Crucially, if \mathcal{X} is any arbitrary set, without defined structure, we can nevertheless think of the pair (\mathcal{X}, k) as (a subset of) a Hilbert space.

The following representer theorem shows that a large class of regularized optimization problems on RKHS have solutions that can be expressed as kernel expansions in terms of the training data. Suppose we are given the following components:

- nonempty set \mathcal{X}
- positive kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with corresponding RKHS \mathcal{H}
- training sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in(\mathcal{X} \times \mathbb{R})$
- strictly increasing $g:[0,+\infty] \rightarrow \mathbb{R}$
- arbitrary cost function $c:\left(X \times \mathbb{R}^{2}\right)^{m} \rightarrow \mathbb{R} \cup\{\infty\}$
- function class $\mathcal{F}=\left\{f(\cdot)=\sum_{k=1}^{\infty} \beta_{k} k\left(\cdot, z_{k}\right) \mid \beta_{k} \in \mathbb{R}, z_{k} \in \mathcal{X},\|f\|_{\mathcal{H}}<\infty\right\} \subset \mathbb{R}^{\mathcal{X}}$

Theorem 4, (Nonparametric Representer Theorem). With the notation above, any $\tilde{f} \in \mathcal{F}$ minimizing the regularized risk functional

$$
\begin{equation*}
f=\arg \min _{f \in \mathcal{F}}\left[c\left(\left\{\left(x_{n}, y_{n}, f\left(x_{n}\right)\right)\right\}_{n=1}^{N}\right)+g\left(\|f\|_{\mathcal{H}}\right)\right] \tag{1}
\end{equation*}
$$

admits a representation of the form $f(\cdot)=\sum_{n=1}^{N} \alpha_{n} k\left(\cdot, x_{n}\right)$.
Proof. Given $\left(x_{1}, \ldots, x_{N}\right)$, consider the orthogonal decomposition of any $f \in \mathcal{F}$ into components parallel and orthogonal to $\overline{\operatorname{span}}\left\{\phi\left(x_{1}\right), \ldots \phi\left(x_{N}\right)\right\}$,

$$
f=v+\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right) \quad \text { where } \quad\left\langle v, \phi\left(x_{n}\right)\right\rangle_{\mathcal{H}}=0 \quad \text { for } n=1, \ldots, N
$$

The reproducing property gives $f\left(x_{j}\right)=\left\langle f, \phi\left(x_{j}\right)\right\rangle$, so application of f to a data point x_{k} yields

$$
f\left(x_{k}\right)=\left\langle v+\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right), \phi\left(x_{k}\right)\right\rangle=\overline{\left\langle v, \phi\left(x_{k}\right)\right\rangle_{\mathcal{H}}}+\sum_{n=1}^{N} \alpha_{n}\left\langle\phi\left(x_{n}\right), \phi\left(x_{k}\right)\right\rangle_{\mathcal{H}}
$$

Since $f\left(x_{k}\right)$ does not depend on v, neither does the first term in (Eqn. 1). For the second term, since v is orthogonal to $\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right)$ and g is strictly monotonic,

$$
\begin{aligned}
g\left(\|f\|_{\mathcal{H}}\right) & =g\left(\left\|v+\sum_{n=1}^{N} \alpha_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}\right) \\
& =g\left(\sqrt{\|v\|_{\mathcal{H}}^{2}+\left\|\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right)\right\|_{\mathcal{H}}^{2}}\right) \geq g\left(\sum_{n=1}^{N} \alpha_{n} \phi\left(x_{n}\right)\right)
\end{aligned}
$$

Hilbert Space Adjoints

Theorem 5, (Existence of Adjoints). For every continuous linear transformation $T \in B C\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, there is a unique adjoint $T^{*} \in B C\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$ with

$$
\langle T x, y\rangle_{\mathcal{H}_{2}}=\left\langle x, T^{*} y\right\rangle_{\mathcal{H}_{1}} \quad \forall x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}
$$

Proof. Concisely, the adjoint sends $y \in \mathcal{H}_{2}$ to the unique Riesz representation $T^{*} y \in \mathcal{H}_{1}$ of the continuous linear functional $x \mapsto\langle T x, y\rangle_{\mathcal{H}_{2}}$.
(1) Existence/Uniqueness. Fix $y \in \mathcal{H}_{2}$. To figure out what $T^{*} y \in \mathcal{H}_{1}$ should be, consider the continuous linear functional $\varphi_{y}: \mathcal{H}_{1} \rightarrow \mathcal{C}$ given by $\varphi_{y}(x)=$ $\langle T x, y\rangle_{\mathcal{H}_{2}}$. By Riesz representation, there is a unique vector $T^{*} y \in \mathcal{H}_{1}$ such that $\varphi_{y}(\cdot)=\langle T \cdot, y\rangle_{\mathcal{H}_{2}}=\left\langle\cdot, T^{*} y\right\rangle_{\mathcal{H}_{1}}$.
(2) Linearity. $\varphi_{\alpha y}(x)=\bar{\alpha}\langle T x, y\rangle=\bar{\alpha}\left\langle x, T^{*} y\right\rangle=\left\langle x, \alpha T^{*} y\right\rangle$

$$
\varphi_{y_{1}+y_{2}}(x)=\left\langle T x, y_{1}\right\rangle+\left\langle T x, y_{2}\right\rangle=\left\langle x, T^{*} y_{1}+T^{*} y_{2}\right\rangle
$$

(3) Continuity. The adjoint is a bounded linear map. Observe that

$$
\begin{array}{rlr}
\left\|T^{*} y\right\|^{2} & =\left|\left\langle T^{*} y, T^{*} y\right\rangle\right|=\left|\left\langle T T^{*} y, y\right\rangle\right| \\
& \leq\left\|T T^{*} y\right\|\|y\| \leq\|T\|_{o p}\left\|T^{*} y\right\|\|y\| & \text { (Cauchy-Schwarz) }
\end{array}
$$

Thus $\left\|T^{*} y\right\| \leq\|T\|_{o p}\|y\|$ for all $y \in \mathcal{H}_{2}$, and $\left\|T^{*}\right\|_{o p} \leq\|T\|_{o p}$.

Property 3, (Properties of Adjoints). Let $T \in B C\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$.
I. $\left(T^{*}\right)^{*}=T$ and $\|T\|_{o p}=\left\|T^{*}\right\|_{o p}$
II. T is an isometry if and only if $T^{*} T=\mathrm{Id}_{\mathcal{H}_{1}}$.
III. T is an isomorphism if and only if $T^{*} T=\operatorname{Id}_{\mathcal{H}_{1}}$ and $T T^{*}=\operatorname{Id}_{\mathcal{H}_{2}}$.
IV. If $S \in B C\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)$, then $(S T)^{*}=T^{*} S^{*}$.

Proof. These properties follow from careful application of the definition.
Part I. Fix $x \in \mathcal{H}_{1}$. By definition, $\left(T^{*}\right)^{*} x \in \mathcal{H}_{2}$ represents the continuous linear functional $y \mapsto\left\langle T^{*} y, x\right\rangle_{\mathcal{H}_{1}}$ on \mathcal{H}_{2}. Since $\left\langle T^{*} y, x\right\rangle_{\mathcal{H}_{1}}=\langle y, T x\rangle_{\mathcal{H}_{2}}$ by construction of T^{*}, we have $\left(T^{*}\right)^{*} x=T x$. In proving Theorem 5, we showed $\left\|T^{*}\right\|_{o p} \leq\|T\|_{o p}$. We now have $\|T\|_{o p}=\left\|\left(T^{*}\right)^{*}\right\|_{o p} \leq\left\|T^{*}\right\|_{o p}$.
Part II. An isometry is a distance-preserving map. A continuous linear map $T \in$ $B C\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ preserves distances precisely when $T^{*} T=\operatorname{Id}_{\mathcal{H}_{1}}$, since the adjoint condition is

$$
\left\langle T x_{1}, T x_{2}\right\rangle_{\mathcal{H}_{2}}=\left\langle x_{1}, T^{*} T x_{2}\right\rangle_{\mathcal{H}_{1}}=\left\langle x_{1}, x_{2}\right\rangle_{\mathcal{H}_{1}} \Longleftrightarrow T^{*} T x_{2}=x_{2}
$$

Part III. An isomorphism between inner product spaces is defined to be an invertible isometry. From Parts I \& II, the claim is obvious.
Part IV. TODO

Example 1. The adjoint of the projection map $\pi_{V}: \mathcal{H} \rightarrow V$ onto a closed subspace $V \preccurlyeq \mathcal{H}$ is the inclusion map $\iota_{V}: V \rightarrow \mathcal{H}$. For any $x \in \mathcal{H}, v \in V$,

$$
\langle x, v\rangle=\left\langle x_{/ /}, v\right\rangle+\left\langle x_{\perp}, v\right\rangle=\left\langle x_{/ /}, v\right\rangle
$$

where $x=x_{/ /}+x_{\perp}$ is the orthogonal decomposition of x with respect to V. Since $\pi_{V}(x)=x_{/ /}$, the above says $\left\langle\pi_{V}(x), v\right\rangle_{V}=\left\langle x, \iota_{V}(v)\right\rangle_{\mathcal{H}}$. As a linear operator, $\pi_{V}: \mathcal{H} \rightarrow \mathcal{H}$ is self adjoint, since $\pi_{V}(v)=v$ for any $v \in V$.

References

[1] Terrence Tao. Amplification, arbitrage, and the tensor power trick. Blog, September 2007. URL https://terrytao.wordpress.com/2007/09/05/ amplification-arbitrage-and-the-tensor-power-trick/.
[2] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In International conference on computational learning theory, pages 416-426. Springer, 2001.
[3] Terrence Tao. An Epsilon of Room, I. American Mathematical Society, 2010.

