Inner Product Spaces

Every inner product space has an induced norm $||x|| = \sqrt{\langle x, y \rangle}$. The Cauchy-Schwarz inequality relates norms and inner products.

Theorem 1, (Cauchy-Schwarz). In an inner product space, $|\langle v, w \rangle| \leq ||v|| ||w||$.

Proof. (see Tao [1]) In the real case, expanding $||v - w||^2 \ge 0$ is enough. In the complex case, we use *amplification*. Expanding $||v - w||^2 \ge 0$, we obtain

$$\mathfrak{Re}\left\langle v,w
ight
angle \leqrac{1}{2}{{{\left\| v
ight\|}^{2}}}+rac{1}{2}{{{\left\| w
ight\|}^{2}}}$$

Observe that the phase rotation $v \mapsto e^{i\theta}v$ preserves the right but not the left-hand side,

$$\mathfrak{Re}\{e^{i\theta} \langle v, w \rangle\} \le \frac{1}{2} \|v\|^2 + \frac{1}{2} \|w\|^2$$

Choose $\theta = -\arg \langle v, w \rangle$ to cancel out the phase of $\langle v, w \rangle$. Then,

$$|\langle v, w \rangle| \le \frac{1}{2} ||v||^2 + \frac{1}{2} ||w||^2$$

Now, amplify again with the homogenization symmetry $(v, w) \mapsto (\lambda v, \frac{1}{\lambda}w)$, for some $\lambda > 0$, preserving the left-hand side but not the right,

$$|\langle v, w \rangle| \le \frac{\lambda^2}{2} \|v\|^2 + \frac{1}{2\lambda^2} \|w\|^2$$

If $v, w \neq 0$, the minimum ||v|| ||w|| is achieved when $\lambda^2 = ||w|| / ||v||$, giving the final inequality. If either is zero, the inequality holds in the limit $\lambda \to 0$ or $\lambda \to +\infty$. \Box

The Cauchy-Schwarz inequality can be used to show that $\langle x, y \rangle$ is continuous in both arguments. It is natural to ask whether every norm comes from an inner product; in general, the answer is no, but the following exercises demonstrate that the *parallelogram law* for norms characterizes inner product spaces.

EXERCISE 1. (Parallelogram Law) For any inner product space,

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

EXERCISE 2. (Polarization Identity) Show that a norm $\|\cdot\|$ satisfying the parallelogram law is induced by the inner product

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 + \|x-y\|^2) + \frac{i}{4} (\|x+iy\|^2 + \|x-iy\|^2)$$

Definition 1. An **isometry** is a distance-preserving map. Two inner product spaces are **isomorphic** if there is an invertible isometry between them.

Independence and Span

Definition 2. Vectors $\{v_{\alpha}\}_{\alpha \in A} \subset V$ are (algebraically) independent iff every non-trivial finite linear combination is non-zero, that is, $\sum_{k=1}^{n} v_{\alpha_k}$ is zero only when $\alpha_1, \ldots, \alpha_n \in \mathcal{C}$ are all zero.

Definition 3. The algebraic span of a collection $\mathcal{V} \subset V$ of vectors is the set of finite linear combinations of vectors in \mathcal{V} , denoted span (\mathcal{V}) . The closed span or Hilbert space span is $\overline{\text{span}}(\mathcal{V})$.

Orthogonality

As expected, we call two vectors $v, w \in V$ orthogonal if $\langle v, w \rangle = 0$, and orthonormal if both have unit length. The Pythagorean theorem $||x + y||^2 = ||x||^2 + ||y||^2$ for orthogonal vectors follows easily from sesquilinearity. We also have the following familiar properties.

EXERCISE 3. Let V be an inner product space, and $x \in \text{span}\{v_{\alpha}\}_{\alpha \in A}$.

- I. Every orthonormal system $\{v_{\alpha}\}_{\alpha \in A}$ is algebraically independent.
- II. (Inversion) $x = \sum_{\alpha \in A} \langle x, v_{\alpha} \rangle v_{\alpha}$ with finitely many non-zero terms.
- III. (Plancherel) $||x||^2 = \sum_{\alpha \in A} |\langle x, v_{\alpha} \rangle|^2$.

EXERCISE 4. (Gram-Schmidt) Let $\mathcal{B} = \{v_1, \ldots, v_n\} \subset V$ be orthonormal in an inner product space. For any $x \notin \operatorname{span} \mathcal{B}$, there exists v_{n+1} orthogonal to \mathcal{B} such that $\operatorname{span}\{\mathcal{B}, v_{n+1}\} = \operatorname{span}\{\mathcal{B}, x\}$.

Hilbert Spaces

A Hilbert space \mathcal{H} is a complete real or complex inner product space. Unless otherwise stated, we take the metric topology on \mathcal{H} induced by the inner product. Naturally, a subspace of \mathcal{H} is a Hilbert space if and only if it is closed. In particular, proper dense subspaces cannot be Hilbert spaces. Inner product spaces are sometimes called *pre-Hilbert* spaces, since their unique completion is a Hilbert space.

Theorem 2, (Existence of Minimizers). Let $K \subset \mathcal{H}$ be non-empty, closed, and convex. For any $x \in \mathcal{H}$, there is a unique $y \in K$ of minimum distance ||y - x|| to x. Further, for any $z \in K$ different from y, $\Re c \langle z - y, y - x \rangle \geq 0$.

Proof. Adapted from Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12.

- (1) <u>Uniqueness</u>. Observe from the parallelogram law that if y_1 and y_2 are distinct and equidistant from x, then their midpoint $\frac{1}{2}(y_1 + y_2)$ is strictly closer to x. Thus the minimizer, if it exists, is unique.
- (2) <u>Angle.</u> If y is the distance minimizer and $z \in K$, the interpolant $(1 \theta)y + \theta z$ is at least as far from x as y for any $0 < \theta < 1$. Squaring and rearranging, we conclude $2\mathfrak{Re} \langle z - y, y - x \rangle + \theta ||z - y||^2 \ge 0$. In the limit $\theta \to 0$ we obtain the desired inequality.
- (3) Existence. Define $D \equiv \inf_{y \in K} ||x y|| \in [0, +\infty)$. By definition of infimum, there is a sequence $y_1, y_2, \ldots \in K$ whose distances approach the infimum, $||x - y_k|| \to D$. In fact, this sequence is Cauchy, and therefore converges to some $y \in \mathcal{H}$ with ||x - y|| = D. Since K is closed, $y \in K$ must be the minimizer. \Box

Orthogonal Projections

Corollary 1, (Orthogonal Projections). Let $V \preccurlyeq \mathcal{H}$ be a closed subspace. Then each $x \in \mathcal{H}$ can be expressed uniquely as $x = x_{\parallel} + x_{\perp}$, where x_{\perp} is orthogonal to each $v \in V$ and $x_{\parallel} \in V$ is called the **orthogonal projection**.

Proof. We show that x_{\parallel} must be the distance minimizer from V to x.

(1) <u>Uniqueness</u>. Suppose such a decomposition exists. Since $x_{\parallel} \in V$, we have $x_{\parallel} - v \in V$ for any $v \in V$. Thus x_{\perp} is orthogonal to $x_{\parallel} - v$, and by the Pythagorean theorem,

$$||x - v||^{2} = ||(x - x_{//}) + (x_{//} - v)||^{2}$$
$$= ||x - x_{//}||^{2} + ||x_{//} - v||^{2} \ge ||x - x_{//}||^{2}$$

Therefore, our only choice for x_{\parallel} is the unique distance minimizer, making $x_{\perp} = x - x_{\parallel}$ unique as well.

(2) <u>Existence</u>. It remains to show that $x_{\perp} = x - x_{\parallel}$ satisfies the orthogonality condition when x_{\parallel} is the closest point in V to x. Since V is a subspace, for any $v \in V$ and $\lambda \in C$, we have $x_{\parallel} + \lambda v \in V$. Thus

$$\begin{split} x - x_{/\!/} \|^2 &\leq \|x - (x_{/\!/} + \lambda v)\|^2 \\ &= \|x - x_{/\!/}\|^2 + |\lambda|^2 \|v\|^2 - 2\mathfrak{Re}\{\lambda \langle v, x_{\perp}\rangle\} \end{split}$$

Then $|\lambda|^2 ||v||^2 \ge 2\Re \mathfrak{e} \{\lambda \langle v, x_{\perp} \rangle \}$. Choose $\lambda \in \mathcal{C}$ to cancel the phase of $\langle v, x_{\perp} \rangle$ and send $\lambda \to 0$ to obtain $\langle v, x_{\perp} \rangle = 0$.

Remark 1. The orthogonal projection operator $\pi_V : \mathcal{H} \to V$ is a linear contraction, and in particular is a bounded, self-adjoint linear operator on \mathcal{H} . More to be said later.

Orthogonal Complements

Property 1. The orthogonal complement of a subspace $V \preccurlyeq \mathcal{H}$ is the set V^{\perp} of vectors in \mathcal{H} that are orthogonal to every element of V. Then,

- I. V^{\perp} is a closed subspace of \mathcal{H} and $(\overline{V})^{\perp} = V^{\perp}$.
- II. $(V^{\perp})^{\perp} = \overline{V}.$
- III. $V^{\perp} = \{0\}$ if and only if V is dense in \mathcal{H} .
- IV. If V is closed, then $\mathcal{H} \cong V \oplus V^{\perp}$.
- V. Closed $W, V \preccurlyeq \mathcal{H}$ satisfy $(V + W)^{\perp} = V^{\perp} \cap W^{\perp}$.
- VI. Closed $W, V \preccurlyeq \mathcal{H}$ satisfy $(V \cap W)^{\perp} = \overline{V^{\perp} + W^{\perp}}$.

Proof. The proofs are similar to the finite-dimensional case.

- Part I. V^{\perp} is clearly a subspace and closed by continuity of inner products. The inclusion $V \subset \overline{V}$ gives $(\overline{V})^{\perp} \subseteq V^{\perp}$. Conversely, suppose $x \in V^{\perp}$. Since \mathcal{H} is a metric space, each $v \in \overline{V}$ is the limit of some sequence $(v_n) \subset V$. By continuity again, $\langle x, v \rangle = \lim \langle x, v_n \rangle = 0$, so $x \in \overline{V}^{\perp}$.
- Part II. Decompose $x \in (V^{\perp})^{\perp}$ as $x = x_{/\!/} + x_{\perp}$, where $x_{/\!/} \in \overline{V}$ and $x_{\perp} \in (\overline{V})^{\perp} = V^{\perp}$. Since $x \perp V^{\perp}$, we have $x_{\perp} = 0$ and $x = x_{/\!/} \in \overline{V}$. Conversely, each $x \in \overline{V}$ is the limit of vectors $x_n \in V$ orthogonal to V^{\perp} . By continuity of inner products, for any $w \in V^{\perp}$, we have $\langle x, w \rangle = \lim_{n \to \infty} \langle x_n, w \rangle = 0$. Hence $x \in (V^{\perp})^{\perp}$. Part III. If $V^{\perp} = \{0\}$, then $\overline{V} = (V^{\perp})^{\perp} = \mathcal{H}$, so V is dense. Conversely, if V is
- Part III. If $V^{\perp} = \{0\}$, then $V = (V^{\perp})^{\perp} = \mathcal{H}$, so V is dense. Conversely, if V is dense and $x \in V^{\perp}$, then the continuous map $v \mapsto \langle v, x \rangle$ vanishes on the dense set V, so must be identically zero. The only vector orthogonal to all others is the zero vector, so $V^{\perp} = \{0\}$.

Part IV. TODO

Part V. TODO

 $\underline{Part VI.} TODO$

Linear Functionals

Theorem 3, (Riesz Representation). In a complex Hilbert space \mathcal{H} , every continuous linear functional $\varphi : \mathcal{H} \to \mathcal{C}$ is an inner product. That is, there is a unique $v \in \mathcal{H}$ such that $\varphi(\cdot) = \langle \cdot, v \rangle$. Furthermore, $\|\varphi\|_{op} = \|v\|$.

Proof. This result should not be surprising; in finite dimensions, every linear functional analogously has the form $x \stackrel{\varphi}{\mapsto} c^T x$.

- (1) <u>Uniqueness</u>. If $\varphi(\cdot) = \langle \cdot, w \rangle = \langle \cdot, v \rangle$, then $\langle \cdot, v w \rangle \equiv 0$. Only the zero vector is orthogonal to all others, so we must have v = w.
- (2) <u>Existence.</u> Assume $\varphi \neq 0$ or the claim is obvious. By continuity, the proper subspace ker $\varphi \preccurlyeq \mathcal{H}$ is closed. By Property 1, the orthogonal complement contains a nonzero vector $w \in (\ker \varphi)^{\perp}$. Let ||w|| = 1. Since $w \notin \ker \varphi$, we have $\varphi(w) \neq 0$. Now, for any $x \in \mathcal{H}$, the vector $x \frac{\varphi(x)}{\varphi(w)}w$ lies in ker φ , so must be orthogonal to w. Taking inner products, $\langle x, w \rangle \frac{\varphi(x)}{\varphi(w)} = 0$. Then $\varphi(x) = \langle x, \overline{\varphi(w)}w \rangle$, as desired.
- (3) <u>Norm.</u> Let $\varphi(\cdot) = \langle \cdot, v \rangle$ and recall $\|\varphi\|_{op} = \sup \frac{|\varphi(x)|}{\|x\|}$. For $x \in \mathcal{H}$, Cauchy-Schwarz gives $|\varphi(x)| = |\langle x, v \rangle| \le \|x\| \|v\|$; thus $\|\varphi\|_{op} \le \|v\|$. For the reverse direction, notice $\|\varphi\|_{op} \ge |\varphi(v)|/\|v\| = \|v\|$.

Reproducing Kernel Hilbert Spaces

Riesz representation is fundamental to the theory of reproducing kernels in machine learning. Let $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}\}$ be a Hilbert space of functions. The evaluation functional $\varphi_x : f \mapsto f(x)$ is always linear. If the evaluation functional $\varphi_x : f \mapsto f(x)$ has the additional property of being continuous, then \mathcal{H} is called a **reproducing kernel Hilbert space**. Intuitively, this means that

In an RKHS, functions close in norm are pointwise close.

This explains why the Lebesgue space $L^2(\mathbb{R})$ is *not* an RKHS, since L^2 contains equivalence classes of functions which differ on arbitrary null sets. Examples of reproducing spaces include \mathbb{R}^n (interpreted as functions $[n] \to \mathbb{R}$) and the space ℓ_2 of square-summable sequences.

Definition 4. A **positive kernel** is a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following properties:

- I. (Symmetric) k(x, y) = k(y, x) for all $x, y \in \mathcal{X}$
- II. (Positive) For any $x = (x_k)_{k=1}^n \subset \mathcal{X}$ and scalars $\alpha = (\alpha_k)_{k=1}^n \in \mathbb{R}^n$,

$$\alpha^T K(x)\alpha = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) \ge 0$$

In an RKHS, Riesz representation manifests itself in the following form:

Property 2, (Reproducing Property). To every reproducing kernel Hilbert space \mathcal{H} , there corresponds a unique positive kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \qquad \forall x \in \mathcal{X}, f \in \mathcal{H}$$

Proof. By hypothesis, evaluation $\varphi_x : f \mapsto f(x)$ is a continuous linear functional for any $x \in \mathcal{X}$. Riesz representation gives unique $g_x \in \mathcal{H}$ s.t.

$$\varphi_x(f) = f(x) = \langle f, g_x \rangle_H \qquad \qquad \forall x \in \mathcal{X}, f \in \mathcal{H}$$

Consider the kernel defined by $k(x, \cdot) = g_x(\cdot)$ for all $x \in \mathcal{X}$. By applying the above property to the functions $g_x, g_y \in \mathcal{H}$, we see that this kernel inherits symmetry from the inner product on \mathcal{H} ,

$$k(x,y) = g_x(y) = \langle g_x, g_y \rangle_{\mathcal{H}} = \langle g_y, g_x \rangle_{\mathcal{H}} = g_y(x) = k(y,x)$$

Similarly, positivity arises from linearity and the positive-definite property of inner products:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) = \left\langle \sum_{i=1}^{n} \alpha_i g_{x_i}, \sum_{i=1}^{n} \alpha_i g_{x_i} \right\rangle_{\mathcal{H}} \ge 0 \qquad \Box$$

Application: Feature Maps and the Representer Theorem

Above, we've gone from a reproducing space \mathcal{H} to a kernel $k(\cdot, \cdot)$. Conversely, (Schölkopf et al. 2001) show how to construct a unique reproducing kernel Hilbert space starting from only the kernel. Crucially, if \mathcal{X} is any arbitrary set, without defined structure, we can nevertheless think of the pair (\mathcal{X}, k) as (a subset of) a Hilbert space.

The following **representer theorem** shows that a large class of regularized optimization problems on RKHS have solutions that can be expressed as kernel expansions in terms of the training data. Suppose we are given the following components:

- nonempty set \mathcal{X}
- positive kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with corresponding RKHS \mathcal{H}
- training sample $(x_1, y_1), \ldots, (x_n, y_n) \in (\mathcal{X} \times \mathbb{R})$
- strictly increasing $g: [0, +\infty] \to \mathbb{R}$

• arbitrary cost function $c: (X \times \mathbb{R}^2)^m \to \mathbb{R} \cup \{\infty\}$ • function class $\mathcal{F} = \{f(\cdot) = \sum_{k=1}^{\infty} \beta_k k(\cdot, z_k) \mid \beta_k \in \mathbb{R}, z_k \in \mathcal{X}, \|f\|_{\mathcal{H}} < \infty\} \subset \mathbb{R}^{\mathcal{X}}$

Theorem 4, (Nonparametric Representer Theorem). With the notation above, any $f \in \mathcal{F}$ minimizing the regularized risk functional

$$f = \arg\min_{f \in \mathcal{F}} \left[c \left(\left\{ \left(x_n, y_n, f(x_n) \right) \right\}_{n=1}^N \right) + g \left(\|f\|_{\mathcal{H}} \right) \right]$$
(1)

admits a representation of the form $f(\cdot) = \sum_{n=1}^{N} \alpha_n k(\cdot, x_n)$.

Proof. Given (x_1, \ldots, x_N) , consider the orthogonal decomposition of any $f \in \mathcal{F}$ into components parallel and orthogonal to $\overline{\text{span}}\{\phi(x_1),\ldots,\phi(x_N)\},\$

$$f = v + \sum_{n=1}^{N} \alpha_n \phi(x_n)$$
 where $\langle v, \phi(x_n) \rangle_{\mathcal{H}} = 0$ for $n = 1, \dots, N$

The reproducing property gives $f(x_j) = \langle f, \phi(x_j) \rangle$, so application of f to a data point x_k yields

$$f(x_k) = \left\langle v + \sum_{n=1}^N \alpha_n \phi(x_n), \phi(x_k) \right\rangle = \overline{\langle v, \phi(x_k) \rangle}_{\mathcal{H}} + \sum_{n=1}^N \alpha_n \left\langle \phi(x_n), \phi(x_k) \right\rangle_{\mathcal{H}}$$

Since $f(x_k)$ does not depend on v, neither does the first term in (Eqn. 1). For the second term, since v is orthogonal to $\sum_{n=1}^{N} \alpha_n \phi(x_n)$ and g is strictly monotonic,

$$g(\|f\|_{\mathcal{H}}) = g\left(\|v + \sum_{n=1}^{N} \alpha_i \phi(x_i)\|_{\mathcal{H}}\right)$$
$$= g\left(\sqrt{\|v\|_{\mathcal{H}}^2 + \|\sum_{n=1}^{N} \alpha_n \phi(x_n)\|_{\mathcal{H}}^2}\right) \ge g\left(\sum_{n=1}^{N} \alpha_n \phi(x_n)\right) \qquad \Box$$

Hilbert Space Adjoints

Theorem 5, (Existence of Adjoints). For every continuous linear transformation $T \in BC(\mathcal{H}_1, \mathcal{H}_2)$, there is a unique **adjoint** $T^* \in BC(\mathcal{H}_2, \mathcal{H}_1)$ with

$$\langle Tx, y \rangle_{\mathcal{H}_2} = \langle x, T^*y \rangle_{\mathcal{H}_1} \quad \forall x \in \mathcal{H}_1, y \in \mathcal{H}_2$$

Proof. Concisely, the adjoint sends $y \in \mathcal{H}_2$ to the unique Riesz representation $T^*y \in \mathcal{H}_1$ of the continuous linear functional $x \mapsto \langle Tx, y \rangle_{\mathcal{H}_2}$.

- (1) <u>Existence/Uniqueness.</u> Fix $y \in \mathcal{H}_2$. To figure out what $T^*y \in \mathcal{H}_1$ should be, consider the continuous linear functional $\varphi_y : \mathcal{H}_1 \to \mathcal{C}$ given by $\varphi_y(x) = \langle Tx, y \rangle_{\mathcal{H}_2}$. By Riesz representation, there is a unique vector $T^*y \in \mathcal{H}_1$ such that $\varphi_y(\cdot) = \langle T \cdot, y \rangle_{\mathcal{H}_2} = \langle \cdot, T^*y \rangle_{\mathcal{H}_1}$.
- (2) <u>Linearity</u>. $\varphi_{\alpha y}(x) = \overline{\alpha} \langle Tx, y \rangle = \overline{\alpha} \langle x, T^*y \rangle = \langle x, \alpha T^*y \rangle$ $\langle \varphi_{\alpha + 1}, (x) = \langle Tx, y_1 \rangle + \langle Tx, y_2 \rangle = \langle x, T^*y_1 + T^*y_2 \rangle$

$$\varphi_{y_1+y_2}(x) = \langle I x, g_1 \rangle + \langle I x, g_2 \rangle = \langle x, I \rangle g_1 + I \rangle g_2 \rangle$$

(3) Continuity. The adjoint is a bounded linear map. Observe that

$$||T^*y||^2 = |\langle T^*y, T^*y \rangle| = |\langle TT^*y, y \rangle|$$
(adjoint)
$$\leq ||TT^*y|||y|| \leq ||T||_{op} ||T^*y|||y||$$
(Cauchy-Schwarz)

Thus
$$||T^*y|| \le ||T||_{op} ||y||$$
 for all $y \in \mathcal{H}_2$, and $||T^*||_{op} \le ||T||_{op}$.

Property 3, (Properties of Adjoints). Let $T \in BC(\mathcal{H}_1, \mathcal{H}_2)$.

- I. $(T^*)^* = T$ and $||T||_{op} = ||T^*||_{op}$
- II. T is an isometry if and only if $T^*T = \mathrm{Id}_{\mathcal{H}_1}$.
- III. T is an isomorphism if and only if $T^*T = \mathrm{Id}_{\mathcal{H}_1}$ and $TT^* = \mathrm{Id}_{\mathcal{H}_2}$.

IV. If $S \in BC(\mathcal{H}_2, \mathcal{H}_3)$, then $(ST)^* = T^*S^*$.

Proof. These properties follow from careful application of the definition.

- Part I. Fix $x \in \mathcal{H}_1$. By definition, $(T^*)^* x \in \mathcal{H}_2$ represents the continuous linear functional $y \mapsto \langle T^* y, x \rangle_{\mathcal{H}_1}$ on \mathcal{H}_2 . Since $\langle T^* y, x \rangle_{\mathcal{H}_1} = \langle y, Tx \rangle_{\mathcal{H}_2}$ by construction of T^* , we have $(T^*)^* x = Tx$. In proving Theorem 5, we showed $||T^*||_{op} \leq ||T||_{op}$. We now have $||T||_{op} = ||(T^*)^*||_{op} \leq ||T^*||_{op}$.
- Part II. An isometry is a distance-preserving map. A continuous linear map $T \in \overline{BC(\mathcal{H}_1, \mathcal{H}_2)}$ preserves distances precisely when $T^*T = \mathrm{Id}_{\mathcal{H}_1}$, since the adjoint condition is

$$\langle Tx_1, Tx_2 \rangle_{\mathcal{H}_2} = \langle x_1, T^*Tx_2 \rangle_{\mathcal{H}_1} = \langle x_1, x_2 \rangle_{\mathcal{H}_1} \iff T^*Tx_2 = x_2$$

Part IV. TODO

Example 1. The adjoint of the projection map $\pi_V : \mathcal{H} \to V$ onto a closed subspace $V \preccurlyeq \mathcal{H}$ is the inclusion map $\iota_V : V \to \mathcal{H}$. For any $x \in \mathcal{H}, v \in V$,

$$\langle x, v \rangle = \langle x_{//}, v \rangle + \langle x_{\perp}, v \rangle = \langle x_{//}, v \rangle$$

where $x = x_{//} + x_{\perp}$ is the orthogonal decomposition of x with respect to V. Since $\pi_V(x) = x_{//}$, the above says $\langle \pi_V(x), v \rangle_V = \langle x, \iota_V(v) \rangle_{\mathcal{H}}$. As a linear operator, $\pi_V : \mathcal{H} \to \mathcal{H}$ is self adjoint, since $\pi_V(v) = v$ for any $v \in V$.

References

- Terrence Tao. Amplification, arbitrage, and the tensor power trick. Blog, September 2007. URL https://terrytao.wordpress.com/2007/09/05/ amplification-arbitrage-and-the-tensor-power-trick/.
- [2] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In *International conference on computational learning theory*, pages 416–426. Springer, 2001.
- [3] Terrence Tao. An Epsilon of Room, I. American Mathematical Society, 2010.