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Inner Product Spaces
Every inner product space has an induced norm ‖x‖ =

√
〈x, y〉. The Cauchy-Schwarz

inequality relates norms and inner products.

Theorem 1, (Cauchy-Schwarz). In an inner product space, | 〈v, w〉 | ≤ ‖v‖‖w‖.

Proof. (see Tao [1]) In the real case, expanding ‖v − w‖2 ≥ 0 is enough. In the
complex case, we use amplification. Expanding ‖v − w‖2 ≥ 0, we obtain

Re 〈v, w〉 ≤ 1
2‖v‖

2 + 1
2‖w‖

2

Observe that the phase rotation v 7→ eiθv preserves the right but not the left-hand
side,

Re{eiθ 〈v, w〉} ≤ 1
2‖v‖

2 + 1
2‖w‖

2

Choose θ = − arg 〈v, w〉 to cancel out the phase of 〈v, w〉. Then,

| 〈v, w〉 | ≤ 1
2‖v‖

2 + 1
2‖w‖

2

Now, amplify again with the homogenization symmetry (v, w) 7→ (λv, 1
λw), for some

λ > 0, preserving the left-hand side but not the right,

| 〈v, w〉 | ≤ λ2

2 ‖v‖
2 + 1

2λ2 ‖w‖2

If v, w 6= 0, the minimum ‖v‖‖w‖ is achieved when λ2 = ‖w‖/‖v‖, giving the final
inequality. If either is zero, the inequality holds in the limit λ→ 0 or λ→ +∞. �

The Cauchy-Schwarz inequality can be used to show that 〈x, y〉 is continuous
in both arguments. It is natural to ask whether every norm comes from an inner
product; in general, the answer is no, but the following exercises demonstrate that
the parallelogram law for norms characterizes inner product spaces.

Exercise 1. (Parallelogram Law) For any inner product space,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

Exercise 2. (Polarization Identity) Show that a norm ‖·‖ satisfying the parallel-
ogram law is induced by the inner product

〈x, y〉 = 1
4 (‖x+ y‖2 + ‖x− y‖2) + i

4 (‖x+ iy‖2 + ‖x− iy‖2)

Definition 1. An isometry is a distance-preserving map. Two inner product
spaces are isomorphic if there is an invertible isometry between them.

Independence and Span
Definition 2. Vectors {vα}α∈A ⊂ V are (algebraically) independent iff every
non-trivial finite linear combination is non-zero, that is,

∑n
k=1 vαk

is zero only when
α1, . . . , αn ∈ C are all zero.

Definition 3. The algebraic span of a collection V ⊂ V of vectors is the set of
finite linear combinations of vectors in V, denoted span(V). The closed span or
Hilbert space span is span(V).
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Orthogonality
As expected, we call two vectors v, w ∈ V orthogonal if 〈v, w〉 = 0, and orthonormal
if both have unit length. The Pythagorean theorem ‖x + y‖2 = ‖x‖2 + ‖y‖2 for
orthogonal vectors follows easily from sesquilinearity. We also have the following
familiar properties.

Exercise 3. Let V be an inner product space, and x ∈ span{vα}α∈A.

I. Every orthonormal system {vα}α∈A is algebraically independent.
II. (Inversion) x =

∑
α∈A 〈x, vα〉 vα with finitely many non-zero terms.

III. (Plancherel) ‖x‖2 =
∑
α∈A | 〈x, vα〉 |2.

Exercise 4. (Gram-Schmidt) Let B = {v1, . . . , vn} ⊂ V be orthonormal in an
inner product space. For any x /∈ spanB. there exists vn+1 orthogonal to B such
that span{B, vn+1} = span{B, x}.

Hilbert Spaces
A Hilbert space H is a complete real or complex inner product space. Unless
otherwise stated, we take the metric topology on H induced by the inner product.
Naturally, a subspace of H is a Hilbert space if and only if it is closed. In particular,
proper dense subspaces cannot be Hilbert spaces. Inner product spaces are sometimes
called pre-Hilbert spaces, since their unique completion is a Hilbert space.

Theorem 2, (Existence of Minimizers). Let K ⊂ H be non-empty, closed, and
convex. For any x ∈ H, there is a unique y ∈ K of minimum distance ‖y − x‖ to x.
Further, for any z ∈ K different from y, Re 〈z − y, y − x〉 ≥ 0.

Proof. Adapted from Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12.

(1) Uniqueness. Observe from the parallelogram law that if y1 and y2 are distinct
and equidistant from x, then their midpoint 1

2 (y1 + y2) is strictly closer to x.
Thus the minimizer, if it exists, is unique.

(2) Angle. If y is the distance minimizer and z ∈ K, the interpolant (1− θ)y + θz
is at least as far from x as y for any 0 < θ < 1. Squaring and rearranging,
we conclude 2Re 〈z − y, y − x〉+ θ‖z− y‖2 ≥ 0. In the limit θ → 0 we obtain
the desired inequality.

(3) Existence. Define D ≡ infy∈K‖x − y‖ ∈ [0,+∞). By definition of infimum,
there is a sequence y1, y2, . . . ∈ K whose distances approach the infimum,
‖x − yk‖ → D. In fact, this sequence is Cauchy, and therefore converges
to some y ∈ H with ‖x − y‖ = D. Since K is closed, y ∈ K must be the
minimizer. �
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Orthogonal Projections
Corollary 1, (Orthogonal Projections). Let V 4 H be a closed subspace. Then
each x ∈ H can be expressed uniquely as x = x// + x⊥, where x⊥ is orthogonal to
each v ∈ V and x// ∈ V is called the orthogonal projection.

Proof. We show that x// must be the distance minimizer from V to x.

(1) Uniqueness. Suppose such a decomposition exists. Since x// ∈ V , we have
x// − v ∈ V for any v ∈ V . Thus x⊥ is orthogonal to x// − v, and by the
Pythagorean theorem,

‖x− v‖2 = ‖(x− x//) + (x// − v)‖2

= ‖x− x//‖2 + ‖x// − v‖2 ≥ ‖x− x//‖2

Therefore, our only choice for x// is the unique distance minimizer, making
x⊥ = x− x// unique as well.

(2) Existence. It remains to show that x⊥ = x − x// satisfies the orthogonality
condition when x// is the closest point in V to x. Since V is a subspace, for
any v ∈ V and λ ∈ C, we have x// + λv ∈ V . Thus

‖x− x//‖2 ≤ ‖x− (x// + λv)‖2

= ‖x− x//‖2 + |λ|2‖v‖2 − 2Re{λ 〈v, x⊥〉}

Then |λ|2‖v‖2 ≥ 2Re{λ 〈v, x⊥〉}. Choose λ ∈ C to cancel the phase of 〈v, x⊥〉
and send λ→ 0 to obtain 〈v, x⊥〉 = 0. �

Remark 1. The orthogonal projection operator πV : H → V is a linear contraction,
and in particular is a bounded, self-adjoint linear operator on H. More to be said
later.
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Orthogonal Complements
Property 1. The orthogonal complement of a subspace V 4 H is the set V ⊥
of vectors in H that are orthogonal to every element of V . Then,

I. V ⊥ is a closed subspace of H and (V )⊥ = V ⊥.
II. (V ⊥)⊥ = V .
III. V ⊥ = {0} if and only if V is dense in H.
IV. If V is closed, then H ∼= V ⊕ V ⊥.
V. Closed W,V 4 H satisfy (V +W )⊥ = V ⊥ ∩W⊥.
VI. Closed W,V 4 H satisfy (V ∩W )⊥ = V ⊥ +W⊥.

Proof. The proofs are similar to the finite-dimensional case.

Part I. V ⊥ is clearly a subspace and closed by continuity of inner products. The
inclusion V ⊂ V gives (V )⊥ ⊆ V ⊥. Conversely, suppose x ∈ V ⊥. Since H is a
metric space, each v ∈ V is the limit of some sequence (vn) ⊂ V . By continuity
again, 〈x, v〉 = lim 〈x, vn〉 = 0, so x ∈ V ⊥.

Part II. Decompose x ∈ (V ⊥)⊥ as x = x// + x⊥, where x// ∈ V and x⊥ ∈ (V )⊥ =
V ⊥. Since x ⊥ V ⊥, we have x⊥ = 0 and x = x// ∈ V . Conversely, each x ∈ V is
the limit of vectors xn ∈ V orthogonal to V ⊥. By continuity of inner products,
for any w ∈ V ⊥, we have 〈x,w〉 = limn→∞ 〈xn, w〉 = 0. Hence x ∈ (V ⊥)⊥.

Part III. If V ⊥ = {0}, then V = (V ⊥)⊥ = H, so V is dense. Conversely, if V is
dense and x ∈ V ⊥, then the continuous map v 7→ 〈v, x〉 vanishes on the dense
set V , so must be identically zero. The only vector orthogonal to all others is
the zero vector, so V ⊥ = {0}.

Part IV. TODO
Part V. TODO
Part VI. TODO �
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Linear Functionals
Theorem 3, (Riesz Representation). In a complex Hilbert space H, every contin-
uous linear functional ϕ : H → C is an inner product. That is, there is a unique
v ∈ H such that ϕ(·) = 〈·, v〉. Furthermore, ‖ϕ‖op = ‖v‖.

Proof. This result should not be surprising; in finite dimensions, every linear func-
tional analogously has the form x

ϕ7→ cTx.

(1) Uniqueness. If ϕ(·) = 〈·, w〉 = 〈·, v〉, then 〈·, v − w〉 ≡ 0. Only the zero vector
is orthogonal to all others, so we must have v = w.

(2) Existence. Assume ϕ 6≡ 0 or the claim is obvious. By continuity, the proper
subspace kerϕ 4 H is closed. By Property 1, the orthogonal complement
contains a nonzero vector w ∈ (kerϕ)⊥. Let ‖w‖ = 1. Since w /∈ kerϕ, we
have ϕ(w) 6= 0. Now, for any x ∈ H, the vector x − ϕ(x)

ϕ(w)w lies in kerϕ, so
must be orthogonal to w. Taking inner products, 〈x,w〉 − ϕ(x)

ϕ(w) = 0. Then
ϕ(x) =

〈
x, ϕ(w)w

〉
, as desired.

(3) Norm. Let ϕ(·) = 〈·, v〉 and recall ‖ϕ‖op = sup |ϕ(x)|
‖x‖ . For x ∈ H, Cauchy-

Schwarz gives |ϕ(x)| = | 〈x, v〉 | ≤ ‖x‖‖v‖; thus ‖ϕ‖op ≤ ‖v‖. For the reverse
direction, notice ‖ϕ‖op ≥ |ϕ(v)|/‖v‖ = ‖v‖. �
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Reproducing Kernel Hilbert Spaces
Riesz representation is fundamental to the theory of reproducing kernels in machine
learning. Let H = {f : X → R} be a Hilbert space of functions. The evaluation
functional ϕx : f 7→ f(x) is always linear. If the evaluation functional ϕx : f 7→ f(x)
has the additional property of being continuous, then H is called a reproducing
kernel Hilbert space. Intuitively, this means that

In an RKHS, functions close in norm are pointwise close.

This explains why the Lebesgue space L2(R) is not an RKHS, since L2 contains
equivalence classes of functions which differ on arbitrary null sets. Examples of
reproducing spaces include Rn (interpreted as functions [n]→ R) and the space `2
of square-summable sequences.

Definition 4. A positive kernel is a function k : X × X → R with the following
properties:

I. (Symmetric) k(x, y) = k(y, x) for all x, y ∈ X
II. (Positive) For any x = (xk)nk=1 ⊂ X and scalars α = (αk)nk=1 ∈ Rn,

αTK(x)α =
n∑
i=1

n∑
j=1

αiαjK(xi, xj) ≥ 0

In an RKHS, Riesz representation manifests itself in the following form:

Property 2, (Reproducing Property). To every reproducing kernel Hilbert space
H, there corresponds a unique positive kernel k : X × X → R such that

f(x) = 〈f, k(x, ·)〉H ∀x ∈ X , f ∈ H

Proof. By hypothesis, evaluation ϕx : f 7→ f(x) is a continuous linear functional
for any x ∈ X . Riesz representation gives unique gx ∈ H s.t.

ϕx(f) = f(x) = 〈f, gx〉H ∀x ∈ X , f ∈ H

Consider the kernel defined by k(x, ·) = gx(·) for all x ∈ X . By applying the above
property to the functions gx, gy ∈ H, we see that this kernel inherits symmetry from
the inner product on H,

k(x, y) = gx(y) = 〈gx, gy〉H = 〈gy, gx〉H = gy(x) = k(y, x)

Similarly, positivity arises from linearity and the positive-definite property of inner
products:

n∑
i=1

n∑
j=1

αiαjk(xi, xj) =
〈 n∑
i=1

αigxi ,

n∑
i=1

αigxi

〉
H
≥ 0 �
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Application: Feature Maps and the Representer Theorem

Above, we’ve gone from a reproducing space H to a kernel k(·, ·). Conversely,
(Schölkopf et al. 2001) show how to construct a unique reproducing kernel Hilbert
space starting from only the kernel. Crucially, if X is any arbitrary set, without
defined structure, we can nevertheless think of the pair (X , k) as (a subset of) a
Hilbert space.

The following representer theorem shows that a large class of regularized
optimization problems on RKHS have solutions that can be expressed as kernel
expansions in terms of the training data. Suppose we are given the following
components:

• nonempty set X
• positive kernel k : X × X → R with corresponding RKHS H
• training sample (x1, y1), . . . , (xn, yn) ∈ (X × R)
• strictly increasing g : [0,+∞]→ R
• arbitrary cost function c : (X × R2)m → R ∪ {∞}
• function class F = {f(·) =

∑∞
k=1 βkk(·, zk) | βk ∈ R, zk ∈ X , ‖f‖H <∞} ⊂ RX

Theorem 4, (Nonparametric Representer Theorem). With the notation above, any
f̃ ∈ F minimizing the regularized risk functional

f = arg min
f∈F

[
c
({(

xn, yn, f(xn)
)}N
n=1

)
+ g
(
‖f‖H

)]
(1)

admits a representation of the form f(·) =
∑N
n=1 αnk(·, xn).

Proof. Given (x1, . . . , xN ), consider the orthogonal decomposition of any f ∈ F
into components parallel and orthogonal to span{φ(x1), . . . φ(xN )},

f = v +
N∑
n=1

αnφ(xn) where 〈v, φ(xn)〉H = 0 for n = 1, . . . , N

The reproducing property gives f(xj) = 〈f, φ(xj)〉, so application of f to a data
point xk yields

f(xk) =
〈
v +

N∑
n=1

αnφ(xn), φ(xk)
〉

=XXXXXX〈v, φ(xk)〉H +
N∑
n=1

αn 〈φ(xn), φ(xk)〉H

Since f(xk) does not depend on v, neither does the first term in (Eqn. 1). For the
second term, since v is orthogonal to

∑N
n=1 αnφ(xn) and g is strictly monotonic,

g(‖f‖H) = g
(
‖v +

N∑
n=1

αiφ(xi)‖H
)

= g
(√√√√‖v‖2

H + ‖
N∑
n=1

αnφ(xn)‖2
H

)
≥ g
( N∑
n=1

αnφ(xn)
)

�
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Hilbert Space Adjoints
Theorem 5, (Existence of Adjoints). For every continuous linear transformation
T ∈ BC(H1,H2), there is a unique adjoint T ∗ ∈ BC(H2,H1) with

〈Tx, y〉H2
= 〈x, T ∗y〉H1

∀x ∈ H1, y ∈ H2

Proof. Concisely, the adjoint sends y ∈ H2 to the unique Riesz representation
T ∗y ∈ H1 of the continuous linear functional x 7→ 〈Tx, y〉H2

.

(1) Existence/Uniqueness. Fix y ∈ H2. To figure out what T ∗y ∈ H1 should be,
consider the continuous linear functional ϕy : H1 → C given by ϕy(x) =
〈Tx, y〉H2

. By Riesz representation, there is a unique vector T ∗y ∈ H1 such
that ϕy(·) = 〈T ·, y〉H2

= 〈·, T ∗y〉H1
.

(2) Linearity. ϕαy(x) = α 〈Tx, y〉 = α 〈x, T ∗y〉 = 〈x, αT ∗y〉
ϕy1+y2(x) = 〈Tx, y1〉+ 〈Tx, y2〉 = 〈x, T ∗y1 + T ∗y2〉

(3) Continuity. The adjoint is a bounded linear map. Observe that

‖T ∗y‖2 = | 〈T ∗y, T ∗y〉 | = | 〈TT ∗y, y〉 | (adjoint)
≤ ‖TT ∗y‖‖y‖ ≤ ‖T‖op‖T

∗y‖‖y‖ (Cauchy-Schwarz)

Thus ‖T ∗y‖ ≤ ‖T‖op‖y‖ for all y ∈ H2, and ‖T ∗‖op ≤ ‖T‖op. �

Property 3, (Properties of Adjoints). Let T ∈ BC(H1,H2).

I. (T ∗)∗ = T and ‖T‖op = ‖T ∗‖op
II. T is an isometry if and only if T ∗T = IdH1 .
III. T is an isomorphism if and only if T ∗T = IdH1 and TT ∗ = IdH2 .
IV. If S ∈ BC(H2,H3), then (ST )∗ = T ∗S∗.

Proof. These properties follow from careful application of the definition.

Part I. Fix x ∈ H1. By definition, (T ∗)∗x ∈ H2 represents the continuous linear
functional y 7→ 〈T ∗y, x〉H1

on H2. Since 〈T ∗y, x〉H1
= 〈y, Tx〉H2

by construction
of T ∗, we have (T ∗)∗x = Tx. In proving Theorem 5, we showed ‖T ∗‖op ≤ ‖T‖op.
We now have ‖T‖op = ‖(T ∗)∗‖op ≤ ‖T ∗‖op.

Part II. An isometry is a distance-preserving map. A continuous linear map T ∈
BC(H1,H2) preserves distances precisely when T ∗T = IdH1 , since the adjoint
condition is

〈Tx1, Tx2〉H2
= 〈x1, T

∗Tx2〉H1
= 〈x1, x2〉H1

⇐⇒ T ∗Tx2 = x2

Part III. An isomorphism between inner product spaces is defined to be an invertible
isometry. From Parts I & II, the claim is obvious.

Part IV. TODO �

Example 1. The adjoint of the projection map πV : H → V onto a closed subspace
V 4 H is the inclusion map ιV : V → H. For any x ∈ H, v ∈ V ,

〈x, v〉 = 〈x//, v〉+ 〈x⊥, v〉 = 〈x//, v〉

where x = x// + x⊥ is the orthogonal decomposition of x with respect to V . Since
πV (x) = x//, the above says 〈πV (x), v〉V = 〈x, ιV (v)〉H. As a linear operator,
πV : H → H is self adjoint, since πV (v) = v for any v ∈ V .
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