	Probability	
Benjamin R. Bray	Dynkin's π - λ Theorem	November 15, 2016

Constructing probability measures for *all* sets in a general σ -algebra would be near impossible. The Carathéodory extension theorem allows us to define a measure explicitly for only a small collection of simple sets, which may or may not form a σ -algebra, and automatically extend the measure to a proper measurable space. The uniqueness claim in the extension theorem makes use of **Dynkin's** π - λ theorem. The name refers to π - and λ -systems, which are convenient names attached two the two sets of technical conditions that appear in Dynkin's theorem. A π -system is a class of subsets closed under finite intersection, while a λ -system satisfies slightly weaker conditions than a σ -algebra.

DEFINITION 1. A class $\mathcal{C} \subset \mathcal{P}(\Omega)$ is a π -system if $A, B \in \mathcal{C} \implies A \cap B \in \mathcal{C}$.

DEFINITION 2. A class $\mathcal{L} \subset \mathcal{P}(\Omega)$ is a λ -system if

- I. $\Omega \in \mathcal{L}$
- II. (Contained Difference) $A, B \in \mathcal{L}, A \subset B \implies B \setminus A \in \mathcal{L}$
- III. (Monotone Union) $A_1 \subset A_2 \subset \cdots \in \mathcal{L} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$

EXERCISE 1. Prove each of the following statements.

- I. Every σ -algebra is both a π -system and λ -system.
- II. Every algebra is a π -system, but an algebra need not be a λ -system.
- III. A λ -system that is also a π -system is a σ -algebra.

It is easily checked that the intersection of two λ -systems is a λ -system. Much like for σ -algebras, we define the λ -system $\langle \mathcal{A} \rangle_{\lambda}$ generated by $\mathcal{A} \subset \mathcal{P}(\Omega)$ to be the intersection of all λ -systems containing \mathcal{A} . It is the smallest λ -system containing \mathcal{A} .

Lemma 1. A class $\mathcal{A} \subset \mathcal{P}(\Omega)$ of subsets of Ω which is both a π -system and λ -system is a σ -algebra.

Lemma 2. If $\mathcal{C} \subset \mathcal{P}(\Omega)$ is a π -system, then $\langle \mathcal{C} \rangle_{\lambda}$ is a π -system.

- (1) First, we show $\langle \mathcal{C} \rangle_{\lambda}$ is closed under intersection with sets from \mathcal{C} .
 - (a) Observe that the set $\Lambda_1 = \{A \in \langle \mathcal{C} \rangle_{\lambda} \mid \forall B \in \mathcal{C}, A \cap B \in \langle \mathcal{C} \rangle_{\lambda}\}$ is a λ -system containing \mathcal{C} .
 - (i) $\Omega \in \Lambda_1$, since for any $B \in \mathcal{C} \subset \langle \mathcal{C} \rangle_{\lambda}$, we have $\Omega \cap B = B \in \langle \mathcal{C} \rangle_{\lambda}$.
 - (ii) Contained Difference. Suppose $A_1, A_2 \in \Lambda_1$, with $A_1 \subset A_2$.
 - (1) For any $B \in \mathcal{C}$, we know $A_1 \cap B, A_2 \cap B \in \langle \mathcal{C} \rangle_{\lambda}$.
 - (2) Recalling that $\langle \mathcal{C} \rangle_{\lambda}$ is a λ -system, and therefore closed under contained differences,

$$(A_2 \setminus A_1) \cup B = (A_2 \cup B) \setminus (A_1 \cup B) \in \langle \mathcal{C} \rangle$$

- (3) Therefore $A_2 \setminus A_1 \in \Lambda_1$, and Λ_1 is closed under contained differences.
- (iii) Monotone Union. Suppose $A_1 \subset A_2 \subset \cdots \in \Lambda_1$. Let $A = \bigcup_{n=1}^{\infty} A_n$.
 - (1) Pick any $B \in \mathcal{C}$. Then $B_n \equiv A_n \cap B \in \langle \mathcal{C} \rangle_{\lambda}$, and $B_1 \subset B_2 \subset \cdots$.
 - (2) Recalling that $\langle \mathcal{C} \rangle_{\lambda}$ is a λ -system, and therefore closed under monotone unions,

$$A \cap B = \bigcup_{n=1}^{\infty} [A_n \cap B] = \bigcup_{n=1}^{\infty} B_n \in \langle \mathcal{C} \rangle_{\lambda}$$

(3) Therefore, Λ_1 is closed under monotone unions.

- (b) Therefore, $\langle \mathcal{C} \rangle_{\lambda} \subset \Lambda_1$ by definition. But $\Lambda_1 \subset \langle \mathcal{C} \rangle_{\lambda}$, so the two sets are equal!
- (2) Next, we use the previous result to show $\langle \mathcal{C} \rangle_{\lambda}$ is closed under intersection in general.
 - (a) Observe that the set $\Lambda_2 = \{A \in \langle \mathcal{C} \rangle_\lambda \mid \forall B \in \langle \mathcal{C} \rangle_\lambda, A \cap B \in \langle \mathcal{C} \rangle_\lambda \}$ is a λ system.
 - (b) By the previous result, $\mathcal{C} \subset \Lambda_2$, as the intersection of any two sets from $\langle \mathcal{C} \rangle_{\lambda}$ and \mathcal{C} lies in $\langle \mathcal{C} \rangle_{\lambda}$.
 - (c) Therefore, $\langle \mathcal{C} \rangle_{\lambda} \subset \Lambda_2$, by definition. But $\Lambda_2 \subset \langle \mathcal{C} \rangle_{\lambda}$, so the two sets are equal!

Theorem 1, (Dynkin π - λ). If $\mathcal{C} \subset \mathcal{P}(\Omega)$ is a π -system, then $\langle \mathcal{C} \rangle_{\lambda} = \langle \mathcal{C} \rangle_{\sigma}$.

Proof. We already know $\langle \mathcal{C} \rangle_{\lambda}$ is a λ -system. Applying Lemma 2, $\langle \mathcal{C} \rangle_{\lambda}$ is also a π -system. By Lemma 1, then, $\langle \mathcal{C} \rangle_{\lambda}$ is a σ -algebra containing \mathcal{C} , and so $\langle \mathcal{C} \rangle_{\sigma} \subset \langle \mathcal{C} \rangle_{\lambda}$. Similarly, $\langle \mathcal{C} \rangle_{\lambda} \subset \langle \mathcal{C} \rangle_{\sigma}$, since every σ -algebra is a λ -system. Therefore, $\langle \mathcal{C} \rangle_{\lambda} = \langle \langle \mathcal{C} \rangle_{\lambda} \rangle_{\sigma}$.

Corollary 1. If $\mathcal{C} \subset \mathcal{P}(\Omega)$ is a π -system and $\mathcal{L} \subset \mathcal{P}(\Omega)$ is a λ -system containing \mathcal{C} , then $\langle \mathcal{C} \rangle_{\sigma} \subset \mathcal{L}$.

Proof. By the π - λ theorem, $\langle \mathcal{C} \rangle_{\sigma} = \langle \mathcal{C} \rangle_{\lambda} \subset \mathcal{L}$.