Carathéodory's Theorem

Theorem 1 (Carathéodory). Let $X \subset \mathbb{R}^d$. Then each point of conv(X) is a convex combination of at most d + 1 points of X.

Proof. Suppose there exists $y \in \text{conv}(X)$ that cannot be expressed as a convex combination of fewer than $m \ge d+2$ points in X. Then

$$y = \sum_{k=1}^{m} \lambda_k x_k$$
 with $\sum_{k=1}^{m} \lambda_k = 1$ and $\lambda_k > 0 \ \forall k$

The $m \ge d+2$ points $x_1, \ldots, x_m \in X$ must be affinely dependent, so

$$\sum_{k=1}^{m} \mu_k x_k = 0 \text{ with } \sum_{k=1}^{m} \mu_k = 0$$

Then, for any $\alpha \in \mathbb{R}$,

$$y = y + 0 = \sum_{k=1}^{m} \lambda_k x_k + \alpha \sum_{j=1}^{m} \mu_k x_k = \sum_{k=1}^{m} (\lambda_k + \alpha \mu_k) x_k$$

The new coefficients $\Lambda_k \equiv \lambda_k + \alpha \mu_k$ satisfy $\sum_{k=1}^m \Lambda_k = 1$. Choosing

$$j = \arg\min_{k:\mu_k > 0} \frac{\lambda_k}{\mu_k}$$

we further have $\Lambda_k \geq 0$ for all k = 1, ..., m and $\Lambda_j = 0$. Hence y is a convex combination of fewer than m points of X, a contradiction!

From the proof it is clear that each point of $\operatorname{conv}(X)$ for $X \subset \mathbb{R}^d$ can be written as a convex combination of affinely independent points from X, of which there can be at most d+1. It follows immediately that the convex hull of a set $X \subset \mathbb{R}^d$ is the union of all simplexes with vertices in X.

Corollary 1. Let $X \subset \mathbb{R}^d$. Each boundary point of conv(X) is a convex combination of d points from X.

Proof (from math.stackexchange.com/q/1786544). Let $C = \operatorname{conv}(X)$. For any $x \in \partial C$, there is a supporting hyperplane \mathcal{H} to C at x; that is, C is disjoint from an open half-space of \mathcal{H} . Observe that any representation of xas a convex combination of points from P cannot involve elements of P that are not in \mathcal{H} ; otherwise, the combination would lie outside the hyperplane. Therefore $x \in \operatorname{conv}(P \cap \mathcal{H})$. Applying Carathéodory's theorem to $P \cap \mathcal{H}$, considered as a subset of the (d-1)-dimensional space \mathcal{H} , we are done. \Box

Corollary 2. The convex hull of a compact set $K \subset \mathbb{R}^d$ is compact.

Proof (Danzer et al. 1963). Note that the unit simplex $\Delta^d \subset \mathbb{R}^{d+1}$ is compact. Consider the function $f : (\mathbb{R}^{d+1} \times K^{d+1}) \to K$ given by

$$f(\alpha_1, \dots, \alpha_{d+1}, x_1, \dots, x_{d+1}) = \sum_{k=1}^{d+1} \alpha_k x_k \in K$$

Since f is continuous and $\Delta^d \times K^{d+1}$ is compact, the set $f(\Delta^d \times K^{d+1})$ is compact. By Carathéodory's theorem, $f(\Delta^d \times K^{d+1}) = \operatorname{conv}(K)$. \Box

Radon's Lemma

Figure 1: Two radon partitions.

Theorem 2 (Radon's Lemma). Let $A = \{a_1, \ldots, a_{d+2}\} \subset \mathbb{R}^d$. Then there exist two disjoint subsets $A_1, A_2 \subset A$ whose convex hulls have nonempty intersection.

Proof (Matoušek 2002). The d+2 points in $A \subset \mathbb{R}^d$ must be affinely dependent, that is, there exist $\lambda_1, \ldots, \lambda_{d+2} \in \mathbb{R}$ not all zero such that

$$\sum_{k=1}^{d+2} \lambda_k = 0 \text{ and } \sum_{k=1}^{d+2} \lambda_k a_k = 0$$

The sets $P = \{k \mid \lambda_k > 0\}$ and $N = \{k \mid \lambda_k < 0\}$ determine the desired subsets. Both are nonempty, so put $A_1 = \{\lambda_k \mid k \in P\}$ and $A_2 = \{\lambda_k \mid k \in N\}$. Let $S \equiv \sum_{k \in P} \lambda_k$; we also have $S = -\sum_{k \in N} \lambda_k$. Define

$$x \equiv \sum_{k \in P} \frac{\lambda_k}{S} a_k = \sum_{k \in N} \frac{-\lambda_k}{S} a_k$$

where equality holds because $\sum_{k=1}^{d+2} \lambda_k a_k = \sum_{k \in P} \lambda_k a_k + \sum_{k \in N} \lambda_k a_k = 0$. Both representations cast x as a convex combination, first of points from A_1 then from A_2 . Hence $x \in \operatorname{conv}(A_1) \cap \operatorname{conv}(A_2)$.

Helly's Theorem

Theorem 3 (Helly). Let $C_1, C_2, \ldots, C_n \subset \mathbb{R}^d$ be convex, with $n \geq d+1$. If every d+1 of these sets intersect, then $\bigcap_{i=1}^n C_i \neq \emptyset$.

Proof (Matoušek 2002). For fixed d, we proceed by induction on n. The base case n = d + 1 is clear, so assume $n \ge d + 2$ and that Helly's theorem holds for smaller n.

Consider convex $C_1, \ldots, C_n \subset \mathbb{R}^d$ such that any d + 1 sets intersect. If we leave out any one of these sets C_i , the remaining sets have nonempty intersection $a_i \in \bigcap_{j \neq i} C_j$ by the inductive assumption. Consider the $n \geq$ d+2 points $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$. By Radon's lemma, there exist disjoint sets $A_1, A_2 \subset A$ such that $\operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \neq \emptyset$. Choose a point x in the intersection. For any $i \in [n]$, either $a_i \notin A_1$ or $a_i \notin A_2$. In the former case, each $a_j \in A_1$ lies in C_i , so $x \in \operatorname{conv}(A_1) \subset C_i$ by convexity. In the latter case we similarly have $x \in \operatorname{conv}(A_2) \subset C_i$. Therefore, $x \in \bigcap_{i=1}^n C_i$.

Further Reading

Compare proofs to (Matoušek 2002). For a comprehensive survey of applications see (Danzer et al. 1963). An elegant proof of Haar's theorem from approximation theory is given by (Pták 1958) via Carathéodory's theorem.

References

- Ludwig Danzer, Branko Grünbaum, and Victor Klee. *Helly's Theorem* and its Relatives. American Mathematical Society Providence, RI, 1963.
- [2] Jiří Matoušek. Lectures on Discrete Geometry, volume 212. Springer Science & Business Media, 2002.
- [3] Vlastimil Pták. A remark on approximation of continuous functions. Czechoslovak Mathematical Journal, 8(2):251–256, 1958.

Figure 2: Illustration of Radon's proof of Helly's theorem for d = 2 and n = 4.