Carathéodory's Theorem

Theorem 1 (Carathéodory). Let $X \subset \mathbb{R}^{d}$. Then each point of $\operatorname{conv}(X)$ is a convex combination of at most $d+1$ points of X.

Proof. Suppose there exists $y \in \operatorname{conv}(X)$ that cannot be expressed as a convex combination of fewer than $m \geq d+2$ points in X. Then

$$
y=\sum_{k=1}^{m} \lambda_{k} x_{k} \text { with } \sum_{k=1}^{m} \lambda_{k}=1 \text { and } \lambda_{k}>0 \forall k
$$

The $m \geq d+2$ points $x_{1}, \ldots, x_{m} \in X$ must be affinely dependent, so

$$
\sum_{k=1}^{m} \mu_{k} x_{k}=0 \text { with } \sum_{k=1}^{m} \mu_{k}=0
$$

Then, for any $\alpha \in \mathbb{R}$,

$$
y=y+0=\sum_{k=1}^{m} \lambda_{k} x_{k}+\alpha \sum_{j=1}^{m} \mu_{k} x_{k}=\sum_{k=1}^{m}\left(\lambda_{k}+\alpha \mu_{k}\right) x_{k}
$$

The new coefficients $\Lambda_{k} \equiv \lambda_{k}+\alpha \mu_{k}$ satisfy $\sum_{k=1}^{m} \Lambda_{k}=1$. Choosing

$$
j=\arg \min _{k: \mu_{k}>0} \frac{\lambda_{k}}{\mu_{k}}
$$

we further have $\Lambda_{k} \geq 0$ for all $k=1, \ldots, m$ and $\Lambda_{j}=0$. Hence y is a convex combination of fewer than m points of X, a contradiction!

From the proof it is clear that each point of $\operatorname{conv}(X)$ for $X \subset \mathbb{R}^{d}$ can be written as a convex combination of affinely independent points from X, of which there can be at most $d+1$. It follows immediately that the convex hull of a set $X \subset \mathbb{R}^{d}$ is the union of all simplexes with vertices in X.

Corollary 1. Let $X \subset \mathbb{R}^{d}$. Each boundary point of $\operatorname{conv}(X)$ is a convex combination of d points from X.

Proof (from math.stackexchange.com/q/1786544). Let $C=\operatorname{conv}(X)$. For any $x \in \partial C$, there is a supporting hyperplane \mathcal{H} to C at x; that is, C is disjoint from an open half-space of \mathcal{H}. Observe that any representation of x as a convex combination of points from P cannot involve elements of P that are not in \mathcal{H}; otherwise, the combination would lie outside the hyperplane. Therefore $x \in \operatorname{conv}(P \cap \mathcal{H})$. Applying Carathéodory's theorem to $P \cap \mathcal{H}$, considered as a subset of the $(d-1)$-dimensional space \mathcal{H}, we are done.

Corollary 2. The convex hull of a compact set $K \subset \mathbb{R}^{d}$ is compact.
Proof (Danzer et al. 1963). Note that the unit simplex $\Delta^{d} \subset \mathbb{R}^{d+1}$ is compact. Consider the function $f:\left(\mathbb{R}^{d+1} \times K^{d+1}\right) \rightarrow K$ given by

$$
f\left(\alpha_{1}, \ldots, \alpha_{d+1}, x_{1}, \ldots, x_{d+1}\right)=\sum_{k=1}^{d+1} \alpha_{k} x_{k} \in K
$$

Since f is continuous and $\Delta^{d} \times K^{d+1}$ is compact, the set $f\left(\Delta^{d} \times K^{d+1}\right)$ is compact. By Carathéodory's theorem, $f\left(\Delta^{d} \times K^{d+1}\right)=\operatorname{conv}(K)$.

Figure 1: Two radon partitions.

Figure 2: Illustration of Radon's proof of Helly's theorem for $d=2$ and $n=4$.

Radon's Lemma

Theorem 2 (Radon's Lemma). Let $A=\left\{a_{1}, \ldots, a_{d+2}\right\} \subset \mathbb{R}^{d}$. Then there exist two disjoint subsets $A_{1}, A_{2} \subset A$ whose convex hulls have nonempty intersection.

Proof (Matoušek 2002). The $d+2$ points in $A \subset \mathbb{R}^{d}$ must be affinely dependent, that is, there exist $\lambda_{1}, \ldots, \lambda_{d+2} \in \mathbb{R}$ not all zero such that

$$
\sum_{k=1}^{d+2} \lambda_{k}=0 \text { and } \sum_{k=1}^{d+2} \lambda_{k} a_{k}=0
$$

The sets $P=\left\{k \mid \lambda_{k}>0\right\}$ and $N=\left\{k \mid \lambda_{k}<0\right\}$ determine the desired subsets. Both are nonempty, so put $A_{1}=\left\{\lambda_{k} \mid k \in P\right\}$ and $A_{2}=\left\{\lambda_{k} \mid k \in\right.$ $N\}$. Let $S \equiv \sum_{k \in P} \lambda_{k}$; we also have $S=-\sum_{k \in N} \lambda_{k}$. Define

$$
x \equiv \sum_{k \in P} \frac{\lambda_{k}}{S} a_{k}=\sum_{k \in N} \frac{-\lambda_{k}}{S} a_{k}
$$

where equality holds because $\sum_{k=1}^{d+2} \lambda_{k} a_{k}=\sum_{k \in P} \lambda_{k} a_{k}+\sum_{k \in N} \lambda_{k} a_{k}=0$. Both representations cast x as a convex combination, first of points from A_{1} then from A_{2}. Hence $x \in \operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right)$.

Helly's Theorem

Theorem 3 (Helly). Let $C_{1}, C_{2}, \ldots, C_{n} \subset \mathbb{R}^{d}$ be convex, with $n \geq d+1$. If every $d+1$ of these sets intersect, then $\cap_{i=1}^{n} C_{i} \neq \emptyset$.

Proof (Matoušek 2002). For fixed d, we proceed by induction on n. The base case $n=d+1$ is clear, so assume $n \geq d+2$ and that Helly's theorem holds for smaller n.

Consider convex $C_{1}, \ldots, C_{n} \subset \mathbb{R}^{d}$ such that any $d+1$ sets intersect. If we leave out any one of these sets C_{i}, the remaining sets have nonempty intersection $a_{i} \in \cap_{j \neq i} C_{j}$ by the inductive assumption. Consider the $n \geq$ $d+2$ points $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{d}$. By Radon's lemma, there exist disjoint sets $A_{1}, A_{2} \subset A$ such that $\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset$. Choose a point x in the intersection. For any $i \in[n]$, either $a_{i} \notin A_{1}$ or $a_{i} \notin A_{2}$. In the former case, each $a_{j} \in A_{1}$ lies in C_{i}, so $x \in \operatorname{conv}\left(A_{1}\right) \subset C_{i}$ by convexity. In the latter case we similarly have $x \in \operatorname{conv}\left(A_{2}\right) \subset C_{i}$. Therefore, $x \in \bigcap_{i=1}^{n} C_{i}$.

Further Reading

Compare proofs to (Matoušek 2002). For a comprehensive survey of applications see (Danzer et al. 1963). An elegant proof of Haar's theorem from approximation theory is given by (Pták 1958) via Carathéodory's theorem.

References

[1] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly's Theorem and its Relatives. American Mathematical Society Providence, RI, 1963.
[2] Jiří Matoušek. Lectures on Discrete Geometry, volume 212. Springer Science \& Business Media, 2002.
[3] Vlastimil Pták. A remark on approximation of continuous functions. Czechoslovak Mathematical Journal, 8(2):251-256, 1958.

