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1 Re-interpretation of Vector Spaces
Vector spaces over a field are a special case of the more general notion of
modules over a ring. Previously, we defined a vector space as a set along
with two operations which obey a long list of axioms:

Definition 1a. An (abstract) vector space (V,F,+, ·) consists of

I. A field F of scalars
II. A set V of objects called (abstract) vectors
III. An rule (+) : V × V → V for vector addition, satisfying

a. (associativity) u+ (v + w) = (u+ v) + w
b. (commutativity) u+ v = v + u
c. (additive identity) exists 0 ∈ V with v + 0 = v for all v ∈ V
d. (additive inverse) for all v ∈ V , exists (−v) ∈ V with v+(−v) = 0

IV. A rule (·) : F× V → V for scalar multiplication, satisfying
a. (scalar identity) 1F · v = v for all v ∈ V
b. (compatibility) (αβ)v = α(β(v))
c. (distributes over addition) α(v + w) = αv + αw
d. (distributes over field addition) (α+ β)v = αv + βv

We can state these properties more concisely by noticing that Property III
is equivalent to the requirement that (V,+) forms a commutative group.

Definition 1b. An (abstract) vector space over the field F is a commu-
tative group (V,+) together with a rule (·) : F× V → V satisfying

I. (scalar identity) 1F · v = v for all v ∈ V
II. (compatibility) (αβ)v = α(β(v))
III. (distributes over addition) α(v + w) = αv + αw
IV. (distributes over field addition) (α+ β)v = αv + βv

Definitions 1a and 1b seem to present the set V as the primary object of
interest, relegating the scalars F to the sidelines. The key to understand-
ing modules is to turn this presumption on its head by treating F as the
distinguished object instead.

By partial application of the scaling operator (·) : F × V → V , each
scalar α ∈ F corresponds to a linear map ϕa : v 7→ αv from V to itself.
Linear self-maps on V constitute the endomorphism ring (End(V ),+, ◦),
with pointwise addition and function composition. The vector space axioms
ensure that the map ϕ� : F → (V → V ) from field elements to linear self-
maps is a ring homomorphism. We arrive at our third and final definition,

Definition 1c. An (abstract) vector space over the field F is a commu-
tative group (V,+) together with a ring homomorphism ϕ : F→ End(V ).

The ring homomorphism defines the additive and multiplicative group ac-
tions on V by scalars from the field F.

0Prerequisites: vector space, group, ring, endomorphism ring
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2 Modules
When defining modules, we only require that the set acting on V be a ring,
rather than a field.

Definition 4. A module over the ring R is a commutative group (M,+)
together with a ring homomorphism ϕ : R→ End(M) defining an action of
R on M , where End(M) is the set of group homomorphisms M →M .

Modules over a ring R are called R-modules, for short. An R-module is
called left if it arises from a left action, and right otherwise. As for vector
spaces, we could unfold this definition into a list of axioms, but this would
obfuscate the real purpose of modules: Many mathematical objects happen
to be rings, and modules allow us to study rings by their action on a set
(much like we can study groups via their representations).

Definition 5. Let M be an R-module. An R-submodule of M is a sub-
group N 6 (M,+) closed under the ring action, rn ∈ N for r ∈ R, n ∈ N .

Example 1. Some important examples of modules are listed below.

• If F is a field, then F-modules and F-vector spaces are identical.
• Every ring R is an R-module over itself. In particular, every field F is
an F-vector space. Submodules of R as a field over itself are ideals.
• If S is a subring of R with 1S = 1R, every R-module is an S-module.
• If G is a commutative group of finite order m, then m · g = 0 for all
g ∈ G, and G is a (Z/mZ)-module. In particular, if G has prime order
p, then G is a vector space over the field (Z/pZ).
• The smooth real-valued functions C∞(M) on a smooth manifold form
a ring. The smooth vector fields onM form a C∞(M)-module.
• For a ring R, every R-algebra has natural (left/right) R-module struc-
ture given by the (left/right) ring action of R on A.

Example 2. (Z-modules) By definition, every Z-module is a commutative
group. Likewise, every commutative group (G,+) becomes a Z-module
under the ring action defined for n ∈ Z, g ∈ G by

n · g =


a+ a+ · · ·+ a (n times) if n > 0
0 if n = 0
−a− a− · · · − a (−n times) if n < 0

We conclude that Z-modules and commutative groups are one in the same.

Modules over a Polynomial Ring F[x]
The polynomial ring F[x] is the space of formal linear combinations of powers
of an indeterminate x, with coefficients drawn from an underlying field F.

p(x) = p0 + p1x+ p2x
2 + · · ·+ pdx

m (m ∈ N)

Polynomials form a ring1 under entrywise addition and discrete convolution
of coefficient sequences. The sum and product of p, q ∈ F[x] have coefficients

[p+ q]k = pk + qk [p · q]k =
max(n,m)∑

j=0
pjqk−j

1the polynomial ring F[x] actually has the additional property of being an algebra,
since F embeds into the center of F[x] via the ring homomorphism (α ∈ F) 7→ (α·1 ∈ F[x]).
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Consider what it would mean for an F-vector space V to be an F[x]-module.
We need a ring homomorphism ϕ : F[x]→ End(V ) describing the action of
polynomials on vectors. Since ϕ preserves sums and products between F[x]
and (End(V ),+, ◦) as rings2, we find that the choice of a single linear map
ϕ(x) ∈ End(V ) determines the value of ϕ on arbitrary polynomials p ∈ F[x],

ϕ(p)v = ϕ

(
m∑
k=1

pkx
k

)
v =

m∑
k=1

pkϕ(x)kv

Similarly, any choice of φ(x) ∈ End(V ) yields a valid ring homomorphism,
exposing a bijection between F[x]-modules and pairs (V, T ∈ End(V )).{

F[x]-modules V
}
←→

{
F-vector spaces V with a
linear map T : V → V

}
In general, there are many different F[x]-module structures a given F-vector
space V , each corresponding to a choice of linear T : V → V .

Proposition 1. The F[x]-submodules of an F[x]-module V are precisely
the T -invariant subspaces of V , where T ∈ End(V ) denotes the action of x.

Proof. Each F[x]-submodule of V is closed under actions by ring elements,
including T . Likewise, every T -invariant subspace is closed under ring
actions, which are all polynomials in T . �

3 Module Homomorphisms
Definition 6. An R-module homomorphism is a map φ : M → N
between modules which respects the R-module structure, by preserving
addition and commuting with the ring action on M ,

φ(x+ y) = φ(x) + φ(y) ∀x, y ∈M
φ(r · x) = r · φ(x) ∀x ∈M, r ∈ R

The kernel of a module homomorphism is its kernel kerφ = φ−1{0S} as
an additive group homomorphism. A bijective R-module homomorphism
is an isomorphism. For any ring R, the set HomR(M,N) of homomor-
phisms between two R-modules forms a commutative group under pointwise
addition, (φ+ ψ)(m) ≡ φ(m) + ψ(m) for φ, ψ ∈ HomR(M,N). Moreover,

Proposition 2. For a commutative ring R, the group HomR(M,N) forms
an R-module under the ring action R→ End(HomR(M,N)) given by

(r · φ)(m) ≡ r · φ(m) ∀ r ∈ R,m ∈M,φ ∈ HomR(M,N)

Sketch. Commutativity of R guarantees that (r · φ) ∈ HomR(M,N), since

(r · φ)(s ·m) = r · φ(s ·m) (by definition)
= rs · φ(m) (φ is a homomorphism)
= sr · φ(m) (commutativity)
= s · (r · φ(m)) (by definition) �

2We take some notational shortcuts. For instance, φ(x)k is φ(x) composed with itself
k times, and pk refers to both the element of F and to the map (v 7→ pkv) ∈ End(V ).
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Ring of Module Endomorphisms
Proposition 3. Endomorphisms HomR(M,M) form a unital ring, where

(φ+ ψ)(m) = φ(m) + ψ(m) (pointwise addition)
(φψ)(m) = (φ ◦ ψ)(m) (composition)

1HomR(M,M) = IdM (multiplicative identity)

We write EndR(M) = HomR(M,M) for the endomorphism ring of M .

Proposition 4. Let M be a module over a commutative ring R. The
endomorphism ring EndR(M) forms an R-algebra, under the same ring
action r ϕ7→ (ϕr : m 7→ rm) which defines M as an R-module.

This property is normally stated without reference to ring homomorphisms,
but in these notes we wish to emphasize that the study of modules is really
the study of ring actions. There is at least one subtlety, though: When
definingM as an R-module, we required that ϕ� : R→ End(M,+) be a ring
homomorphism from R to the additive group endomorphisms on (M,+).
Now, we are asking whether each ϕr is also an R-module homomorphism.

Proof. First, the additive group homomorphism ϕr ∈ End(M,+) is also a
module homomorphism, since for r, s ∈ R and m ∈M ,

ϕr(s ·m) = r · (s ·m) (by definition)
= (rs) ·m1 (associativity of scalars)
= s · (r ·m) (associativity of scalars)
= s · ϕr(m) (by definition)

Futher, ϕ� : R 7→ EndR(M) sending r 7→ ϕr is a ring homomorphism.

ϕr1+r2(m) = (r1 + r2) ·m (by definition)
= r1 ·m+ r2 ·m (distributivity of scalars)
= ϕr1(m) + ϕr2(m) (by definition)

ϕr1r2(m) = (r1r2) ·m (by definition)
= r2 · (r1 ·m) (R commutative)
= (ϕr2 ◦ ϕr1)(m) (by definition)

Finally, each ϕr commutes with every element φ ∈ EndR(M),

(ϕr ◦ φ)(m) = ϕr(φ(m)) (composition)
= r · φ(m) (by definition)
= φ(r ·m) (module homomorphism)
= φ(ϕr(m)) (by definition) �

Corollary 1. By definition, every field F is a commutative ring. Therefore,
the endomorphisms EndF(V ) of any F-vector space form an F-algebra.
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4 Quotient Modules
For groups and rings, recall that quotients are well-defined only for normal
subgroups and multiplication-absorbing subrings (ideals), respectively. For
modules M , it turns out that any submodule N 4M has a quotient M/N ,
and the natural projection map π : M → M/N is a ring homomorphism
with kernel kerπ = N . Similarly, each F-vector subspace has a quotient
F-vector space arising as the kernel of some linear map.

Proposition 5. Let R be a ring. Let N 4 M be a submodule of the R-
moduleM . The (additive, commutative) quotient groupM/N can be made
into an R-module under the ring action R→ End(M/N) given by

r · (x+N) = (r · x) +N ∀ r ∈ R, x+N ∈M/N

The natural projection π : M →M/N mapping x 7→ x+N is an R-module
homomorphism with kernel kerπ = N .

Theorem 1. (First Isomorphism Theorem) Let M,N be R-modules. The
kernel of any module homomorphism φ : M → N is a submodule of M , and

M/ kerφ ∼= φ(M)

5 Free Modules
The vector space concepts of linear combinations, bases, and span all have
analogues in R-module theory. We normally assume R is a ring with identity.

Definition 7. Let M be an R-module. The submodule of M generated
by a subset A ⊂M is the set of finite R-linear combinations

RA ≡ {r1a1 + · · ·+ rmam | rk ∈ R, ak ∈ A,m ∈ N} 4M

A submodule N = RA 4 M is finitely generated if A ⊂ M is finite. A
cyclic submodule N = Ra is generated by a single element a ∈M .

Definition 8. An R-module F is free on the subset A ⊂ F if each nonzero
x ∈ F expands uniquely as an R-linear combination of elements from A, in
which case A is called a basis for F .

x = r1a1 + · · ·+ rmam ∃! rk ∈ R, ak ∈ A,∀x ∈ F

In general, more than one basis may exist. If R is commutative, every basis
has the same cardinality, called the module rank of F . Unlike for vector
spaces, not every module has a basis (not every module is free).

Universal Property of Free Modules
Recall that every linear map T ∈ HomF(V,W ) between F-vector spaces
is uniquely determined by its value on n = dimV points. R-linear maps
between free modules enjoy the same property, which is normally stated in
the following way:

Theorem 2. (Universal Property) For any set A, there is a unique (up
to isomorphism) free R-module Free(A) satisfying the following universal
property: for any R-module M and any function ϕ : A → M , there is a
unique R-module homomorphism Φ : Free(A)→M such that Φ(a) = ϕ(a),

5



Benjamin R. Bray Abstract Algebra: Modules May 13, 2020

A Free(A)

M

ι

ϕ ∃! Φ
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